For each of the following, determine where the student’s confusion is and try to address the problem.

1. Find the function \(y(t) \) that satisfies the differential equation \(\frac{dy}{dt} - 2ty = 6t^2e^{t^2} \) and the condition \(y(0) = 3 \).

2. Solve the following initial value problem: \(\frac{dy}{dt} + 6y = 6t \) with \(y(1) = 2 \).

3. Use Euler’s method with step size 0.2 to estimate \(y(1) \), where \(y(x) \) is the solution of the initial-value problem \(y' = 5x + y^2 \), \(y(0) = 1 \).

4. Evaluate the integral: \(\int_{3}^{5} (t^3 - t^2) \, dt \)

5. Find positive numbers \(x, y \) such that \(xy = 21 \), and \(x + y \) is as small as possible.

6. Find a point \(c \) satisfying the conclusion of the MVT for the following function and interval.
 \(f(x) = x^{-7} \) \quad [1, 9]
7. Determine the intervals on which the given function is concave up or down and find the points of inflection. Let \(f(x) = (x^2 - 10) \exp(x) \)

8. Calculate the Taylor polynomials \(T_2(x) \) and \(T_3(x) \) centered at \(x = \frac{\pi}{4} \) for \(f(x) = \tan(x) \).

9. Calculate \(\int 2 \frac{\tan^3(\ln x)}{x} \, dx \)

10. Calculate the integral \(\int x^4 \sinh(x^5 + 1) \, dx \).

11. Evaluate the integral : \(\int \frac{x^2}{x^2 + 9} \, dx \)