1. I don’t understand volumes of revolution. Can you show me how to find the volume of \(f(x) = x^2 - x \) from \(x = 0 \) to \(x = 1 \), rotated about the line \(x = 5 \)?

2. I don’t understand areas of revolution. Can you show me how to find the surface area of \(f(x) = x^2 - x \) from \(x = 0 \) to \(x = 1 \), rotated about the line \(x = 5 \)?

3. I don’t understand implicit derivatives. Why do we care about this and how do we do it.
 (a) So, when I take the derivative of something with \(y \) in it, I just put in a \(dy/dx \)?
 (b) Why can’t we just solve for \(y \) and then take the derivative?
 (c) What if I want to take \(d/dt \)? What changes then?

4. I don’t understand how to take the derivative of \(y = \sin(x^2 + 1) \).

5. I don’t understand why \(\int_1^\infty x^{-2} \, dx \) exists but \(\int_1^\infty x^{-1} \, dx \) does not.

6. I don’t understand how to integrate \(\int \frac{x}{x+1} \, dx \).

7. I don’t understand how to integrate \(\int \frac{x^2}{x+1} \, dx \).
8. I don’t understand how to integrate \(\int \frac{x}{(x+1)^2} \, dx \).

9. I don’t understand how to integrate \(\int \frac{x}{(x+1)^3} \, dx \).

10. How do you integrate \(\int_{0}^{5} \sqrt{25 - x^2} \, dx \)?

11. How do you integrate \(\int \sqrt{25 - x^2} \, dx \)?