Math 233 Warm Up Problems
September 14, 2009
1. Draw some graphs and level curves
 (a) $x^2 + y^2 + 16x^2 = 36$
 (b) $z = x + y^2$
 (c) $z = x - y^2$
Lecture Problems

2. Compute the partial derivatives
 (a) Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if $z = \sin(xy)$.
 Solution:
 $$\frac{\partial z}{\partial x} = y \cos xy \quad \frac{\partial z}{\partial y} = x \cos xy$$

 (b) Find f_x and f_z if $f(x, y, z) = xyz^2 + e^{yz}$.
 Solution:
 $$f_x = yz^2 \quad f_z = 2xyz + ye^{yz}$$

 (c) Find $D_1 f$ and D_2 if $f(x, y, z) = \frac{xy}{z^2}$
 Solution:
 $$D_1 f = \frac{y}{z^2} \quad D_2 f = -\frac{2xy}{z^3}$$
3. (a) Let \(f(x, y) = \frac{x^4 + 1}{y^5} \). Find \(\nabla f \).
Solution:
\[
\nabla f = \left(\frac{4x^3}{y^5}, -\frac{5(x^4 + 1)}{y^6} \right)
\]

(b) Let \(f(x, y, z) = xyz \). Find \(\nabla f \).
Solution:
\[
\nabla f = (yz, xz, xy)
\]

(c) Let \(f(x, y, z, w) = xyzw \sin x \). Find \(\nabla f \).
Solution:
\[
\nabla f = (yzw \sin x + xyzw \cos(x), xzw \sin x, xyw \sin x, xyz \sin x)
\]
4. Let \(f(x, y) = x^2 - y^2 \). Let \(P = (3, -1) \), \(Q = (2.8, -1) \) and \(R = (3, -0.7) \) Compute \(\nabla f(P) \)

Solution:

\[\nabla f = (6, 2) \]

(a) Use the gradient to describe by how much the function value changes when you move from point \(P \) to point \(Q \).

Solution: We expect \(f(Q) \) to be approximately \(6(-0.2) = -1.2 \) more than \(f(P) \).

(b) Use the gradient to describe by how much the function value changes when you move from point \(P \) to point \(R \).

Solution: We expect \(f(R) \) to be approximately \(2(0.3) = 0.6 \) more than than \(f(P) \).