Math 233 Warm Up Problems
September 1, 2009
1. Determine where, if anywhere, the two lines intersect

\[r_1(t) = (0, 2, 9) + t(3, 4, -1) \]
\[r_2(t) = (6, 4, 5) + t(0, 6, 2) \]
1. Determine where, if anywhere, the two lines intersect

\[\mathbf{r}_1(t) = (0, 2, 9) + t(3, 4, -1) \]
\[\mathbf{r}_2(t) = (6, 4, 5) + t(0, 6, 2) \]

Solution: The lines intersect at the point \((6, 10, 7)\). It is important to change the parameter in one of the lines:

\[\mathbf{r}_1(t) = (0, 2, 9) + t(3, 4, -1) \]
\[\mathbf{r}_2(s) = (6, 4, 5) + s(0, 6, 2) \]

and then you can solve systems of equations \(\mathbf{r}_1(t) = \mathbf{r}_2(s) \) and find that \(t = 2 \) and \(s = 1 \) gives a solution.
Lecture Problems

2. Find the equation of the plane that goes through the points

\[p_1 = (1, 2, 3), \quad p_2 = (1, 3, 2), \quad p_3 = (-1, 3, 10) \]
Lecture Problems

2. Find the equation of the plane that goes through the points

\[p_1 = (1, 2, 3), \quad p_2 = (1, 3, 2), \quad p_3 = (-1, 3, 10) \]

Solution: Note that the plane is parallel to the vectors
\[v_1 = p_2 - p_1 = (0, 1, -1) \] and \[v_2 = p_3 - p_1 = (-2, 1, 7) \]. Thus, we need to find \(N = (a, b, c) \) so that \(N \cdot v_1 = 0 \) and \(N \cdot v_2 = 0 \) giving equations

\[
\begin{align*}
 b - c &= 0 \\
 -2a + b + 7c &= 0
\end{align*}
\]

A possible solution is \(N = (4, 1, 1) \) giving the equation

\[4x + y + z = 9 \]
3. Find the distance between the point $P = (2, 10, 1)$ and the plane $x + y - 2z = 5$.
3. Find the distance between the point \(P = (2, 10, 1) \) and the plane \(x + y - 2z = 5 \).

Solution: The normal vector is \(N = (1, 1, -2) \). I used \(Q = (5, 0, 0) \) as my point on the plane. Then \(v = Q\vec{P} = (-3, 10, 1) \) and the distance is

\[
\|\text{Projection of } Q\vec{P} \text{ to } N\| = \left\| \frac{Q\vec{P} \cdot N}{N \cdot N} N \right\|
\]

\[
= \left\| \frac{5}{6} N \right\|
\]

\[
= \left\| \left(\frac{5}{6}, \frac{5}{6}, -\frac{5}{3} \right) \right\|
\]

\[
= \frac{5}{\sqrt{6}}
\]
4. Calculate the cross product

\[(1, 2, 5) \times (-1, 2, -1) =\]

5. Find two different unit vectors both orthogonal to \((1, 2, 5)\) and \((-1, 2, -1)\).
4. Calculate the cross product

\((1, 2, 5) \times (-1, 2, -1) = (-12, -4, 4)\)

5. Find two different unit vectors both orthogonal to \((1, 2, 5)\) and \((-1, 2, -1)\).

Solution: Use the previous result.

\[
\left(-\frac{3}{\sqrt{11}}, -\frac{1}{\sqrt{11}}, \frac{1}{\sqrt{11}} \right), \quad \left(\frac{3}{\sqrt{11}}, \frac{1}{\sqrt{11}}, -\frac{1}{\sqrt{11}} \right)
\]