Math 233 - October 27, 2009
Solutions

• If a vector field satisfies the mixed partial condition, \(\text{curl } F = (0, 0, 0) \), how can we tell if \(F \) is conservative on its entire domain?

• How do we integrate in \(\mathbb{R}^2 \)?

1. Let \(F = \left(\frac{y^2 - 3y + x^2}{y^2 + x^2}, -\frac{y^2 + x^2 - 3x}{y^2 + x^2} \right) \)

 (a) With \(F = (f, g) \), find \(f_y \) and \(g_x \). Is \(f_y = g_x \)?

 Solution:

 \[f_y = g_x = \frac{3(y - x)(y + x)}{(y^2 + x^2)^2} \]

 (b) Let \(r(t) = (\cos t, \sin t), \; 0 \leq t \leq 2\pi \). Compute

 \[\frac{1}{2\pi} \oint_r F \cdot dr = 3 \]

 (c) Find, if possible, \(k \) and \(\phi \) so that \(F = kG + \nabla \phi \) where \(G = (-y/(x^2 + y^2), x/(x^2 + y^2)) \).

 \[k = 3 \]
 \[\nabla \phi = (1, -1) \]
 \[\phi = x - y \]

Lecture Problems

2. Let \(R \) be the rectangle \([1, 3] \times [2, 8]\). Let

 \[f(x, y) = 7 \]

 \[\iint_R f(x, y) \, dA = 84 \]

3. Let \(R \) be the rectangle \([1, 3] \times [2, 8]\). Let

 \[f(x, y) = \begin{cases}
 -2 & \text{if } y < 4 \\
 5 & \text{if } y \geq 4
 \end{cases} \]

 \[\iint_R f(x, y) \, dy \, dx = -8 + 40 = 32 \]