Math 233 - November 30, 2009

- Cylindrical Coordinates

1. Find the area of an “elementary polar region”:

\[\{(x, y) | r_1 \leq r \leq r_2; \theta_1 \leq \theta \leq \theta_2\} \]

\[A = \]

Lecture Problems

2. Find the cylindrical equation for the cartesian equation \(x^2 + y^2 = 4 \)

3. Find the Cartesian equation for the cylindrical equation \(z = 4 \)

4. Find the cylindrical equation for the Cartesian equation \(x - y = 0 \).

5. Find the cylindrical equation for the cone \(z^2 = x^2 + y^2 \).

6. Find the Cartesian equation of the cylindrical equation \(r^2 + 4z^2 = 16 \).

7. Find the Cartesian equation of the cylindrical equation \(r^2 \cos 2\theta = z \).

 Hint: \(\cos 2\theta = \cos^2 \theta - \sin^2 \theta \).

8. Find the volume of the solid bounded above by the sphere centered at the origin having radius 5 and bounded below by the plane \(z = 4 \).

\[V = \]

9. Find the volume of the solid bounded above by the plane \(z = y + 4 \), below by the \(xy \)-plane and laterally by the right circular cylinder with radius 4 and whose axis is the \(z \)-axis.

\[V = \]

10. Find the volume of the solid inside \(x^2 + y^2 = 4 \), outside \(x^2 + y^2 = 1 \), below \(z = 12 - x^2 - y^2 \) and above \(z = 0 \).

\[V = \]