Math 233 - November 23, 2009

- Triple integrals
1. Use a triple integral to find the volume of the region. Make sure you sketch the region. \(R \) is the tetrahedron with vertices \((0, 0, 0), (3, 2, 0), (0, 3, 0), (0, 0, 2)\).

2. Find the average value of \(f(x, y, z) = x + 2y - z \) on the tetrahedron with vertices \((0, 0, 0), (3, 2, 0), (0, 3, 0), (0, 0, 2)\).

3. Use a triple integral to find the volume of the region. Make sure you sketch the region. \(R \) is the region bounded by the cylinder \(x^2 + y^2 - 2y = 0 \) and the planes \(x - y = 0 \), \(z = 1 \) and \(z = 3 \).
1. Use a triple integral to find the volume of the region. Make sure you sketch the region. \(R \) is the tetrahedron with vertices \((0, 0, 0), (3, 2, 0), (0, 3, 0), (0, 0, 2)\).

Solution:

\[
V = \int_0^3 \int_{2x/3}^{3-x/3} \int_0^{(18-2x-6y)/9} dz \, dy \, dx = 3
\]

2. Find the average value of \(f(x, y, z) = x + 2y - z \) on the tetrahedron with vertices \((0, 0, 0), (3, 2, 0), (0, 3, 0), (0, 0, 2)\).

Solution:

\[
f_{\text{ave}} = \frac{1}{3} \int_0^3 \int_{2x/3}^{3-x/3} \int_0^{(18-2x-6y)/9} x + 2y - z \, dz \, dy \, dx = \frac{11}{4}
\]

3. Use a triple integral to find the volume of the region. Make sure you sketch the region. \(R \) is the region bounded by the cylinder \(x^2 + y^2 - 2y = 0 \) and the planes \(x - y = 0, z = 1 \) and \(z = 3 \).

Solution: \(V = \frac{\pi}{2} - 1 \)
4. Use a triple integral to find the volume of the region. Make sure you sketch the region. \(R \) is solid region in the first octant bounded by \(y = 2x^2 \) and \(y + 4z = 8 \).

5. Find the average value of the function \(f(x, y, z) = xy \) on the solid region in the first octant bounded by \(y = 2x^2 \) and \(y + 4z = 8 \).
4. Use a triple integral to find the volume of the region. Make sure you sketch the region. \(R \) is solid region in the first octant bounded by \(y = 2x^2 \) and \(y + 4z = 8 \).

Solution:

\[
V = \int_0^2 \int_{2x^2}^8 \int_0^{2-y/4} dz \, dy \, dx = \frac{128}{15}
\]

5. Find the average value of the function \(f(x, y, z) = xy \) on the solid region in the first octant bounded by \(y = 2x^2 \) and \(y + 4z = 8 \).

Solution:

\[
V = \frac{15}{128} \int_0^2 \int_{2x^2}^8 \int_0^{2-y/4} xy \, dz \, dy \, dx = \frac{5}{2}
\]
6. Use a triple integral to find the volume of the region. Make sure you sketch the region. \(R \) is the region bounded by \(x^2 = y, \ z^2 = y \) and \(y = 1 \).

7. Use a triple integral to find the volume of the region. Make sure you sketch the region. \(R \) is region bounded between \(z = 9 - x^2 - y^2 \) and \(z = 3x^2 + 3y^2 - 16 \).
6. Use a triple integral to find the volume of the region. Make sure you sketch the region. \(R \) is the region bounded by \(x^2 = y \), \(z^2 = y \) and \(y = 1 \).

Solution:

\[
V = 2 \int_0^1 \int_{x^2}^1 \int_{-\sqrt{y}}^{\sqrt{y}} \, dz \, dy \, dx = 2
\]

7. Use a triple integral to find the volume of the region. Make sure you sketch the region. \(R \) is region bounded between \(z = 9 - x^2 - y^2 \) and \(z = 3x^2 + 3y^2 - 16 \).

Solution:

\[
V = \int_{-5/2}^{5/2} \int_{-\sqrt{25/4-x^2}}^{\sqrt{25/4-x^2}} \int_{3x^2+3y^2-16}^{9-x^2-y^2} \, dz \, dy \, dx = \frac{625\pi}{8}
\]
8. Change the integral to an integral in the order $dz\ dy\ dx$.

$$\int_0^1 \int_0^{\sqrt{1-y^2}} \int_0^{\sqrt{1-y^2-z^2}} f(x, y, z) \, dx \, dz \, dy =$$

9. Change the integral to an integral in the order $dz\ dy\ dx$.

$$\int_0^2 \int_0^{4-2y} \int_0^{4-2y-z} f(x, y, z) \, dx \, dz \, dy =$$
8. Change the integral to an integral in the order $dz\ dy\ dx$.

$$\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} \int_{0}^{\sqrt{1-y^{2}-z^{2}}} f(x, y, z)\ dx\ dz\ dy =$$

$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} f(x, y, z)\ dz\ dy\ dx$$

9. Change the integral to an integral in the order $dz\ dy\ dx$.

$$\int_{0}^{2} \int_{0}^{4-2y} \int_{0}^{4-2y-z} f(x, y, z)\ dx\ dz\ dy =$$

$$\int_{0}^{4} \int_{0}^{2-x/2} \int_{0}^{4-2y-x} f(x, y, z)\ dz\ dy\ dx$$
10. Change the integral to an integral in the order $dy \, dx \, dz$.

$$\int_0^2 \int_0^{9-x^2} \int_0^{2-x} f(x, y, z) \, dz \, dy \, dx =$$

11. Let R be the solid in the first octant cut off from the square cylinder with sides $x = 0$, $x = 1$, $z = 0$ and $z = 1$, cut by the plane $2x + y + 2z = 6$. Do this in two ways

(a) Integrating $dz \, dy \, dx$.
(b) Integrating $dy \, dx \, dz$.
10. Change the integral to an integral in the order $dy \, dx \, dz$.

$$
\int_0^2 \int_0^{9-x^2} \int_0^{2-x} f(x, y, z) \, dz \, dy \, dx = \\
\int_0^2 \int_0^{2-z} \int_0^{9-x^2} f(x, y, z) \, dy \, dx \, dz
$$

11. Let R be the solid in the first octant cut off from the square cylinder with sides $x = 0$, $x = 1$, $z = 0$ and $z = 1$, cut by the plane $2x + y + 2z = 6$. Do this in two ways

(a) Integrating $dz \, dy \, dx$.
(b) Integrating $dy \, dx \, dz$.

Solution: $V = 4$