1. Let $F(x, y, z) = (p(x, y), q(x, y), 0)$ be a vector field in \mathbb{R}^3. Compute the curl of F.

Curl $F = $

2. Use Green’s Theorem to compute. Let C be the boundary of the circle $x^2 + (y - 9)^2 = 4$ oriented clockwise.

$$\int_C \left(2y + \frac{x}{x^4 + 1} \right) \, dx + (\ln(1 + y^2) - x) \, dy =$$

3. Compute

$$\int_{-\infty}^{\infty} e^{-x^2} \, dx =$$

Lecture Problems

4. Use a line integral to compute area of the ellipse

$$\frac{x^2}{25} + \frac{y^2}{49} = 1$$

(Parametrize the ellipse and then compute the appropriate line integral.)