1. Find the most general antiderivative of the function: \(f(x) = \frac{2 + x^2}{1 + x^2} \)
 Solution: \(x + \arctan x + c \)
2. Find the most general function \(f \) satisfying \(f'(x) = \frac{2}{1 + x^2} - \frac{x \cos x + \sqrt{x}}{x} \).
 Solution: \(2 \arctan(x) - \sin x - \frac{2}{\sqrt{x}} + C \)
3. Compute \(\int_{-1}^{1} (5|x| + \pi) \, dx \).
 Solution: \(5 + \frac{2\pi}{3} \)
4. Find the integral associated to the right Riemann sum \(R_n = \sum_{i=1}^{n} \left(\left(1 + \frac{2i}{n} \right)^2 + 1 \right) \frac{2}{n} \).
 Solution: \(\int_{1}^{3} (x^2 + 1) \, dx \)
5. Calculate the integral \(\int_{0}^{2} |x^2 - 1| \, dx \).
 Solution: \(2 \)
6. If \(\int_{a}^{c} f(x) \, dx = 3, \int_{a}^{b} f(x) \, dx = -7, \int_{b}^{c} g(x) \, dx = 6, \) find \(-\int_{c}^{b} 10f(x) + 4g(x) \, dx \).
 Solution: \(124 \)
7. Find the definite integral \(\int_{0}^{\ln 2} \frac{e^t}{e^{2t} + 2e^t + 1} \, dt \).
 Solution: \(\frac{1}{6} \)
8. Evaluate the definite integral \(\int_{-2}^{2} e^{2u+1} \, du \).
 Solution: \(\frac{1}{2} (e^5 - e^{-3}) \)
9. Compute \(\int_{0}^{\pi/3} \frac{\sin x}{\cos^2 x} \, dx \).
 Solution: \(1 \)
10. Compute \(T_3 \) for the function \(f(x) = 3x^2 + 4x + 6 \) for the interval \([0, 3] \). (Recall that \(T_3 = (L_3 + R_3) / 2 \).)
 Solution: \(64.5 \)
11. Suppose \(\int_{1}^{3} f(x) \, dx = 6 \) and \(\int_{1}^{3} g(x) \, dx = 2 \). What is \(\int_{1}^{3} (2f(x) - 3g(x)) \, dx \)?
 Solution: \(6 \)
12. Suppose \(\int_{1}^{3} f(x) = 8, \int_{1}^{2} f(x) = 4, \int_{3}^{4} f(x) = 2, \) what is \(\int_{2}^{3} f(x) \)?
 Solution: \(2 \)
13. Find \(\int_{0}^{1} x (\sqrt{x} + \sqrt[3]{x}) \, dx \)
 Solution: \(29/35 \)
14. If \(g(x) = \int_{1}^{x} \sin(t^2) \, dt \), find \(g'(x) \).
 Solution: \(\frac{\sin x}{2\sqrt{x}} \)
15. Let \(g(x) = \int_{0}^{x} f(t) \, dt \) where \(f(t) \) is the graph below. Determine which of the statements are true:
(a) \(g \) attains an absolute maximum at \(x = 2 \) \[\text{Correct}\]

(b) \(g \) has a local maximum at \(x = 5 \)

(c) \(g \) has a local minimum at \(x = 4 \) \[\text{Correct}\]

(d) \(g \) is concave down on \([0, 2]\)

16. Suppose \(f''(x) = -9 \sin 3x \) and \(f'(0) = 0 \) and \(f(0) = 2 \). Find \(f(\pi/4) \).
 \[\text{Solution:} \quad -3\pi/4 + 1/\sqrt{2} + 2\]

17. If \(f'''(x) = \sin x \), \(f(0) = -3 \), \(f'(0) = 4 \) and \(f''(0) = 1 \). What is \(f(x) \)?
 \[\text{Solution:} \quad \cos x + x^2 + 4x - 4\]

18. The three graphs below are \(f \), \(f' \) and \(f'' \). Identify which is which.

 \[\text{Solution:} \quad \text{Red is } f, \text{ blue is } f' \text{ and green is } f''\]

19. Write \(\int_2^{10} x^6 \, dx \) as a limit of Riemann Sums (right handed sums). (Your answer should be in summation notation.)
 \[\text{Solution:} \quad \lim_{n \to \infty} \sum_{i=1}^{n} \left(2 + \frac{8i}{n} \right)^6 \cdot \frac{8}{n}\]

20. Suppose you know that \(\int_0^b f(x) \, dx = \ln(b + 1) \) for \(b > 0 \). What is \(\int_3^5 (3f(x) - 2) \, dx \)?
 \[\text{Solution:} \quad 3 \ln(3/2) - 4\]
 Note: this was changed from \(\int_2^b f(x) \, dx \) to \(\int_0^b f(x) \, dx \). Without this change there is a clear issue with \(b = 2 \) (which should give an integral of 0, not \(\ln 3 \)).

21. Find a function \(F(x) \) such that \(F''(x) = 4 + 6x + 24x^2 \), \(F(0) = 3 \), \(F(1) = 10 \).
 \[\text{Solution:} \quad F(x) = 2x^2 + x^3 + 2x^4 + 2x + 3\]
 Note: this problem is not a typo, solve it as written.

22. Find \(\int_{-10}^6 |3x - 2| \, dx \)
 \[\text{Solution:} \quad 640/3\]

23. \(\int_0^5 \frac{1}{3} x^3 \, dx = \lim_{n \to \infty} R_n \), where \(R_n \) is the right hand Riemann sum. Find \(R_n \).
 \[\text{Solution:} \quad R_n = \frac{625n^2 + 1250n + 625}{12n^2}\]
 One student proposed that the above is wrong and should instead be: \(R_n = \frac{625n^4 + 1250n^2 + 625}{12n^4} \) I haven’t had time to double check it.
24. \[\int_1^2 2x^2 + 1 \, dx = \lim_{n \to \infty} R_n, \] where \(R_n \) is the right hand Riemann sum. Find \(R_n \).

Solution:
\[R_n = 3 + \frac{2(n + 1)}{n} + \frac{(n + 1)(2n + 1)}{3n^2} \]

25. Let \(g(x) = x^3 \). Find the Riemann sum \(L_4 \) for \(g(x) \) on the interval \([1, 3]\).

Solution: 14

26. Evaluate the following limit by first recognizing it as a Riemann sum for a function defined on \([0, 1]\)
\[\lim_{n \to \infty} \frac{1}{n} \left(\sqrt{\frac{1}{n}} + \sqrt{\frac{2}{n}} + \cdots + \sqrt{\frac{n}{n}} \right) \]

Solution: \(\int_0^1 \sqrt{x} \, dx = \frac{2}{3} \)

27. Let \(g(x) = \int_x^2 \tan t \, dt \). Find \(g'(x) \).

Solution: \(g'(x) = 2x \tan(x^2) - \tan x \)

28. Let \(F(x) = \int_{\sec x}^{\tan x} \sqrt{t^2 + 3} \, dt \). Evaluate \(F'(0) \).

Solution:
\[F'(x) = \sec x \tan x \sqrt{\sec^2 x + 3} - \sec^2 x \sqrt{\tan^2 x + 3} \]

\[F'(x) = -\sqrt{3} \]

29. If \(f(x) = \int_0^x (4 - t^2)e^{t^3} \, dt \), on what interval(s) is \(f \) decreasing and on what intervals is \(f \) increasing?

Solution: Decreasing on \((-\infty, -2)\) and \((2, \infty)\), increasing on \((-2, 2)\).

30. Find all values of \(x \) where \(F(x) = \int_0^x \frac{t^3 - 3t^2 + 2t}{e^t} \, dt \) has a local maximum or local minimum.

Solution:
\[F'(x) = e^x \left(x^3 - 3x^2 + 2x \right) \]
Solving \(F'(x) = 0 \) gives \(x = 0, 1, 2 \). Testing these points gives \(x = 0 \) is a min, \(x = 1 \) is a max, \(x = 2 \) is a min.

31. Find an antiderivative of \(e^{x^2} \sin(3x^2 + \ln x) \).

Solution:
\[\int_0^x e^{x^2} \sin(3x^2 + \ln x) \, dx \]

32. T/F. If \(f(x) \) is continuous and has a minimum of 3 on \([2, 4]\) then we can conclude \(\int_2^4 f(x) \, dx \geq 6 \).

Solution: True

33. T/F. Given \(\int_1^4 g(t) \, dt = -5 \) and \(\int_4^3 g(t) \, dt = 2 \) then \(\int_1^3 g(t) \, dt = -7 \).

Solution: False

34. Find \(\int_{\pi/3}^b \sin t \, dt \) for any \(b \).

Solution: \(\frac{1}{2} - \cos b \)

35. If \(f(5) = 10 \) and \(\int_5^{100} f'(x) \, dx = 73 \), what is \(f(100) \)?

Solution: \(f(100) - f(5) = 73 \) so \(f(100) = 83 \)

36. Find the value of \(t \) where \(f(t) \) has a local maximum:
\[f(t) = \int_0^t \frac{2x^2 + x - 10}{1 + \sin^2 x} \, dx \]

Solution: Solve \(f' = 0 \) to get \(t = 2 \) and \(t = -5/2 \). These these to find that \(f \) has a local max at \(t = -5/2 \) and a local min at \(t = 2 \).
37. Find an antiderivative of $\frac{1}{\sqrt{x}} + e^{2x} + \sin 3x$.

Solution: $2\sqrt{x} + \frac{1}{2}e^{2x} - \frac{1}{3}\cos 3x + C$.

38. Suppose you know the following about a function $f(x)$.

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x)$</td>
<td>-1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
</tr>
</tbody>
</table>

Find the Riemann Sum for $\int_2^6 f(x) \, dx$ using 4 subintervals and right endpoints as sample points.

Solution: $R_4 = 1(f(3) + f(4) + f(5) + f(6)) = 2 + 2 + 1 + (-1) = 4$

39. If x_i^* is a sample point from the ith subinterval of a regular partition of $[1, 3]$ into n subintervals, and Δx is the length of each subinterval, find: $\lim_{n \to \infty} \sum_{i=1}^{n} \frac{3}{2}(x_i^*)^2 \Delta x$.

Solution: This is equal to $\int_1^3 \frac{3}{2}x^2 \, dx = 13$

40. Let $g(x) = \int_0^5 f(t) \, dt$ where f is the function shown. Find $g(5)$.

Solution: 5

41. Let $h(x) = \int_1^{1/x} \sqrt{1 + u^3} \, du$. Find $h'(1/2)$.

Solution: -12

42. Find $\lim_{h \to 0} \frac{1}{h} \int_2^{2+h} t^2 \sin \left(\frac{\pi t}{4} \right) \, dt$

Solution:

$$\lim_{h \to 0} \frac{1}{h} \int_2^{2+h} t^2 \sin \left(\frac{\pi t}{4} \right) \, dt = \frac{d}{dx} \int_2^{x} t^2 \sin \left(\frac{\pi t}{4} \right) \, dt \bigg|_{x=2} = 4 \sin \left(\frac{\pi}{2} \right) \, dt = 4$$

43. Calculate $\int_1^2 \frac{e^x}{1 - e^x} \, dx$

Solution: $\ln(e - 1) - \ln(e^2 - 1)$

44. Let $u = 2t - 1$ and rewrite the integral in the variable u.

$$\int_2^3 t\sqrt{2t-1} \, dt$$

Solution: $\int_3^5 \frac{1}{4}(u^{3/2} + u^{1/2}) \, dy$

45. Find $\int \frac{dx}{x \ln x} = \ln(\ln x) + C$

46. Compute $\int \frac{x}{x^2 - 3} \, dx = \frac{1}{2} \ln(x^2 - 3) + C$

47. Compute $\int_0^{\pi/3} \sin x \cos^4 x \, dx = \frac{31}{160}$
48. Compute \(\int_0^{\sqrt{\ln 3}} 3x e^{-x^2} \, dx = 1 \)

49. Compute \(\int_0^1 \sqrt{x^2 - x^4} \, dx = \frac{1}{3} \)

50. Evaluate the definite integral \(\int_0^2 \frac{dx}{\sqrt{2x + 5}} = 3 - \sqrt{5} \)

51. Find \(\int \cot(x) \ln(\sin x) \, dx = \frac{1}{2} (\ln(\sin x))^2 + C \)

52. Find \(\int_0^{\pi/2} e^{\sin x} \cos x \, dx = e - 1 \)

53. Find \(\int_1^2 x \sqrt{x - 1} \, dx \)
 Solution: \(\frac{16}{15} \)

54. Find \(\int_1^b \frac{\cos(ln t)}{t} \, dt \)
 Solution: \(\sin b \)