Integration by Parts:
\[\int u \, dv = uv - \int v \, du \]

Warm-up Problems

1. **Clicker** The integral below can be done with integration by parts:
\[\int (\ln x)^2 \, dx \]
What is a good choice for \(u \)?
(a) 1
(b) \(\ln x \)
(c) \((\ln x)^2 \) **Correct**
(d) \(dx \)
(e) It can’t be done by integration by parts.

Solution: If \(u = (\ln x)^2 \) then \(du = 2(\ln x) \cdot \frac{1}{x} \cdot dx \) and \(v = x \) and the integral becomes
\[\int (\ln x)^2 \, dx = x(\ln x)^2 - \int 2 \ln x \cdot \frac{1}{x} \cdot x \, dx \]
\[= x(\ln x)^2 - \int 2 \ln x \, dx \]

Integration by parts is necessary a second time. You should get:
\[x(\ln x)^2 - 2x \ln x + 2x + C \]

2. In Problem [] what is \(v \)?

Solution: \(x \).

Class Problems

3. \(\int e^x \cos x \, dx \)

Solution: Trickier, use integration by parts twice and notice the pattern.
\[\frac{1}{2} e^x (\cos x + \sin x) + C \]

The trick for these is the following:
\[I = \int e^x \cos x \, dx \quad (u = e^x, \, du = \cos x \, dx) \]
\[= e^x \sin x - \int e^x \sin x \, dx \quad (u = e^x, \, dv = \sin x \, dx) \]
\[= e^x \sin x + e^x \cos x - \int e^x \cos x \, dx \]
\[I = e^x \sin x + e^x \cos x - I \]
\[2I = e^x \sin x + e^x \cos x \]
\[I = \frac{1}{2} (e^x \sin x + e^x \cos x) \]

Be sure to try this again but with \(u = \cos x \) and \(dv = e^x \, dx \). It should work just the same.
4. \(\int e^x \sin x \, dx \)
 Solution: Integrate by parts twice:
 \[
 I = -e^x \cos x + \int e^x \cos x \, dx = -e^x \cos x + \left(e^x \sin x - \int e^x \sin x \, dx \right)
 \]
 \[
 I = \frac{1}{2}(-e^x \cos x + e^x \sin x)
 \]

5. \(\int e^{3x} \cos 4x \, dx \)
 Solution: \(\frac{1}{25}e^{3x}(4 \sin 4x + 3 \cos 4x) + C \)

6. \(\int x^2 e^{3x} \, dx \)
 Solution: \(\frac{1}{27}e^{3x}(9x^2 - 6x + 2) + C \)

7. \(\int x^3 e^{3x} \, dx \)
 Solution: \(\frac{1}{27}e^{3x}(9x^3 - 9x^2 + 6x - 2) + C \)

8. \(\int x \sin x \, dx \)
 Solution: One option is to use \(u = x \) and \(dv = \sin x \, dx \). Another method is to use a trig identity and transform \(\sin x \cos x = \frac{1}{2} \sin 2x \) and then proceed as normal. In any case your solution might look like one of the following:
 \[
 \frac{1}{4}x \sin^2 x - \frac{1}{4}x \cos^2 x + \frac{1}{8} \sin 2x + C \quad \text{OR} \quad \frac{1}{8} \sin 2x - \frac{1}{4}x \cos 2x + C
 \]

9. \(\int x \ln x \, dx \)
 Solution: Use \(u = \ln x \) and \(dv = x \, dx \).
 \[\int x \ln x \, dx = \frac{1}{2}x^2 \ln x - \frac{1}{4}x^2 + C \]

10. \(\int \frac{\ln x}{x^2} \, dx \)
 Solution: You can do a substitution of \(w = \ln x \) and transform into a \(w \) integral (TRY IT!). Or you can use \(u = \ln x \) and \(dv = \frac{1}{x^2} \, dx \).
 \[\int \frac{\ln x}{x^2} \, dx = -\ln x - \frac{1}{10x^4} + C \]

11. \(\int \arctan x \, dx \)
 Solution: use parts with \(u = \arctan x \) and \(dv = dx \).
 \[
 \int \arctan x \, dx = x \arctan x - \int \frac{x}{x^2 + 1} \, dx
 \]
 \[
 = x \arctan x - \frac{1}{2} \ln(x^2 + 1) + C
 \]

12. \(\int 2x \arctan x \, dx \)
 Solution: There is an algebraic trick at the end (a method which we will formalize later as **Partial Fractions**). Use parts with \(u = \arctan x \) and \(dv = 2x \, dx \).
 \[
 \int 2x \arctan x \, dx = x^2 \arctan x - \int \frac{x^2}{x^2 + 1} \, dx
 \]
 \[
 = x^2 \arctan x - \int \frac{x^2 + 1 - 1}{x^2 + 1} \, dx
 \]
 \[
 = x^2 \arctan x - \int \frac{x^2 + 1}{x^2 + 1} \, dx + \int \frac{1}{x^2 + 1} \, dx
 \]
 \[
 = x^2 \arctan x - x + \arctan x + C
 \]

13. **Clicker** Choose the correct \(u \) if using integration by parts: \(\int (\text{Polynomial}(x)) e^x \, dx \)
 (a) \(u = 1 \) (b) \(u = \text{Polynomial}(x) \) **Correct** (c) \(u = e^x \) (d) \(u = \sin x \) (e) \(u = \cos x \)

14. **Clicker** Choose the correct \(u \) if using integration by parts: \(\int (\text{Polynomial}(x)) \sin x \, dx \)
 (a) \(u = 1 \) (b) \(u = \text{Polynomial}(x) \) **Correct** (c) \(u = e^x \) (d) \(u = \sin x \) (e) \(u = \cos x \)
15. **Clicker** Choose the correct u if using integration by parts: $\int (\text{Polynomial}(x)) \cos x \, dx$
 (a) $u = 1$ (b) $u = \text{Polynomial}(x)$ **Correct** (c) $u = e^x$ (d) $u = \sin x$ (e) $u = \cos x$

16. **Clicker** Choose the correct u if using integration by parts: $\int e^x \sin x \, dx$
 (a) $u = 1$ (b) $u = e^x$ **Correct** (c) $u = \sin x$ **Correct** (d) $u = \cos x$ (e) $u = \ln x$

17. **Clicker** Choose the correct u if using integration by parts: $\int e^x \cos x \, dx$
 (a) $u = 1$ (b) $u = e^x$ **Correct** (c) $u = \sin x$ (d) $u = \cos x$ **Correct** (e) $u = \ln x$

18. **Clicker** Choose the correct u if using integration by parts: $\int \ln x \, dx$
 (a) $u = 1$ (b) $u = e^x$ (c) $u = \sin x$ (d) $u = \cos x$ (e) $u = \ln x$ **Correct**

Lecture Notes: Integration by parts, the “normal” types you will see and you have to have “down cold”:

- $\int (\text{Polynomial}(x)) e^x \, dx$
- $\int (\text{Polynomial}(x)) \sin x \, dx$
- $\int (\text{Polynomial}(x)) \cos x \, dx$
- $\int e^x \sin x \, dx$
- $\int e^x \cos x \, dx$
- $\int \ln x \, dx$

19. $\int \sin x \cos x \, dx$

 Solution: This is a simple substitution. You can use either $u = \sin x$ or $u = \cos x$. In either case you get

 $$\int \sin x \cos x \, dx = \int u \, du \quad (u = \sin x)$$
 $$= \frac{u^2}{2} + C = \frac{1}{2} \sin^2 x + C$$

 $$\int \sin x \cos x \, dx = - \int u \, du \quad (u = \cos x)$$
 $$= -\frac{u^2}{2} + C = -\frac{1}{2} \cos^2 x + C$$

 How can this be????