1. Suppose \(\int_{1}^{3} f(x) \, dx = 6 \) and \(\int_{1}^{3} g(x) \, dx = 2 \). What is \(\int_{1}^{3} (2f(x) - 3g(x)) \, dx \)?
 Solution: 6

2. Suppose \(\int_{1}^{3} f(x) \, dx = 8 \), \(\int_{1}^{3} f(x) \, dx = 4 \), \(\int_{1}^{3} f(x) \, dx = 2 \), what is \(\int_{2}^{3} f(x) \)?
 Solution: 2

3. Find \(\int_{0}^{1} x (\sqrt{x} + \frac{3}{\sqrt{x}}) \, dx \)
 Solution: 29/35

4. If \(g(x) = \int_{1}^{\sqrt{x}} \sin(t^2) \, dt \), find \(g'(x) \).
 Solution: \(\frac{\sin x}{2\sqrt{x}} \)

5. Let \(g(x) = \int_{0}^{x} f(t) \, dt \) where \(f(t) \) is the graph below. Determine which of the statements are true:
 - (a) \(g \) attains an absolute maximum at \(x = 2 \) **Correct**
 - (b) \(g \) has a local maximum at \(x = 5 \)
 - (c) \(g \) has a local minimum at \(x = 4 \) **Correct**
 - (d) \(g \) is concave down on \([0, 2]\)

6. Suppose \(f''(x) = -9 \sin 3x \) and \(f'(0) = 0 \) and \(f(0) = 2 \). Find \(f(\pi/4) \).
 Solution: \(-3\pi/4 + 1/\sqrt{2} + 2\)

7. If \(f'''(x) = \sin x \), \(f(0) = -3 \), \(f'(0) = 4 \) and \(f''(0) = 1 \). What is \(f(x) \)?
 Solution: \(\cos x + x^2 + 4x - 4 \)

8. The three graphs below are \(f \), \(f' \) and \(f'' \). Identify which is which.
 Solution: Red is \(f \), blue is \(f' \) and green is \(f'' \)

9. Write \(\int_{2}^{10} x^6 \, dx \) as a limit of Riemann Sums (right handed sums). (Your answer should be in summation notation.)
 Solution: \(\lim_{n \to \infty} \sum_{i=1}^{n} \left(2 + \frac{8i}{n} \right)^6 \cdot \frac{8}{n} \)

10. Suppose you know that \(\int_{0}^{b} f(x) \, dx = \ln(b + 1) \) for \(b > 0 \). What is \(\int_{3}^{5} (3f(x) - 2) \, dx \)?
 Solution: 3 \(\ln(3/2) - 4 \)

 Note: this was changed from \(\int_{2}^{b} f(x) \, dx \) to \(\int_{0}^{b} f(x) \, dx \). Without this change there is a clear issue with \(b = 2 \) (which should give an integral of 0, not \(\ln 3 \).
11. Find a function \(F(x) \) such that \(F''(x) = 4 + 6x + 24x^2 \), \(F(0) = 3 \), \(F(1) = 10 \).
 Solution: \(F(x) = 2x^2 + x^3 + 2x^4 + 2x + 3 \)
 Note: this problem is not a typo, solve it as written.

12. Find \(\int_{-10}^{6} |3x - 2| \, dx \)
 Solution: 640/3

13. \(\int_{0}^{5} \frac{1}{3} x^3 \, dx = \lim_{n \to \infty} R_n \), where \(R_n \) is the right hand Riemann sum. Find \(R_n \).
 Solution: \(R_n = \frac{625n^2 + 1250n + 625}{12n^2} \)
 One student proposed that the above is wrong and should instead be: \(R_n = \frac{625n^4 + 1250n^2 + 625}{12n^4} \) I haven’t had time to double check it.

14. \(\int_{1}^{2} 2x^2 + 1 \, dx = \lim_{n \to \infty} R_n \), where \(R_n \) is the right hand Riemann sum. Find \(R_n \).
 Solution: \(R_n = 3 + \frac{2(n+1)}{n} + \frac{(n+1)(2n+1)}{3n^2} \)

15. Let \(g(x) = x^3 \). Find the Riemann sum \(L_4 \) for \(g(x) \) on the interval \([1, 3]\).
 Solution: 14

16. Evaluate the following limit by first recognizing it as a Riemann sum for a function defined on \([0, 1]\)
 \[\lim_{n \to \infty} \frac{1}{n} \left(\sqrt{\frac{1}{n}} + \sqrt{\frac{2}{n}} + \cdots + \sqrt{\frac{n}{n}} \right) \]
 Solution: \(\int_{0}^{1} \sqrt{x} \, dx = 2/3 \)

17. Let \(g(x) = \int_{x}^{2} \tan t \, dt \). Find \(g'(x) \).
 Solution: \(g'(x) = 2x \tan(x^2) - \tan x \)

18. Let \(F(x) = \int_{\tan x}^{\sec x} \sqrt{t^2 + 3} \, dt \). Evaluate \(F'(0) \).
 Solution: \(F'(x) = \sec x \tan x \sqrt{\sec^2 x + 3} - \sec^2 x \sqrt{\tan^2 x + 3} \)
 \(F'(0) = -\sqrt{3} \)

19. If \(f(x) = \int_{0}^{x} (4 - t^2) e^t \, dt \), on what interval(s) is \(f \) decreasing and on what intervals is \(f \) increasing?
 Solution: Decreasing on \((-\infty, -2)\) and \((2, \infty)\), increasing on \((-2, 2)\).

20. Find all values of \(x \) where \(F(x) = \int_{0}^{x} \frac{t^3 - 3t^2 + 2t}{e^t} \, dt \) has a local maximum or local minimum.
 Solution: \(F'(x) = \frac{e^x - 3x^2 + 2x}{e^x} \)
 Solving \(F'(x) = 0 \) gives \(x = 0, 1, 2 \). Testing these points gives \(x = 0 \) is a min, \(x = 1 \) is a max, \(x = 2 \) is a min.

21. Find an antiderivative of \(e^{3x} \sin(3x^2 + \ln x) \).
 Solution: \(\int_{0}^{x} e^{3x} \sin(3x^2 + \ln x) \, dx \)

22. T/F. If \(f(x) \) is continuous and has a minimum of 3 on \([2, 4]\) then we can conclude \(\int_{2}^{4} f(x) \, dx \geq 6 \).
 Solution: True
23. T/F. Given \(\int_4^1 g(t) \, dt = -5 \) and \(\int_4^3 g(t) \, dt = 2 \) then \(\int_3^1 g(t) \, dt = -7 \).

Solution: False

24. Find \(\int_{\pi/4}^b \sin t \, dt \) for any \(b \).

Solution: \(\frac{1}{2} - \cos b \)

25. If \(f(5) = 10 \) and \(\int_5^{100} f'(x) \, dx = 73 \), what is \(f(100) \)?

Solution: \(f(100) - f(5) = 73 \) so \(f(100) = 83 \)

26. Find the value of \(t \) where \(f(t) \) has a local maximum:

\[
 f(t) = \int_0^t \frac{2x^2 + x - 10}{1 + \sin^2 x} \, dx.
\]

Solution: Solve \(f' = 0 \) to get \(t = 2 \) and \(t = -5/2 \). These these to find that \(f \) has a local max at \(t = -5/2 \) and a local min at \(t = 2 \).

27. Find an antiderivative of \(\frac{1}{\sqrt{x}} + e^{2x} + \sin 3x \).

Solution: \(2\sqrt{x} + \frac{1}{2}e^{2x} - \frac{1}{4} \cos 3x + C \).

28. Suppose you know the following about a function \(f(x) \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>-1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
</tr>
</tbody>
</table>

Find the Riemann Sum for \(\int_2^6 f(x) \, dx \) using 4 subintervals and right endpoints as sample points.

Solution: \(R_4 = 1(f(3) + f(4) + f(5) + f(6)) = 3 \)

29. If \(x^*_i \) is a sample point from the \(i \)th subinterval of a regular partition of \([1, 3]\) into \(n \) subintervals, and \(\Delta x \) is the length of each subinterval, find: \(\lim_{n \to \infty} \sum_{i=1}^{n} \frac{3}{2} (x^*_i)^2 \Delta x \).

Solution: This is equal to \(\int_1^3 \frac{3}{2} x^2 \, dx = 13 \)

30. Let \(g(x) = \int_0^x f(t) \, dt \) where \(f \) is the function shown. Find \(g(5) \).

\[g(5) \]

Solution: 5

31. Let \(h(x) = \int_1^{1/x} \sqrt{1 + u^3} \, du \). Find \(h'(1/2) \).

Solution: -12

32. Find \(\lim_{h \to 0} \frac{1}{h} \int_2^{2+h} t^2 \sin \left(\frac{\pi t}{4} \right) \, dt \)

Solution:

\[
 \lim_{h \to 0} \frac{1}{h} \int_2^{2+h} t^2 \sin \left(\frac{\pi t}{4} \right) \, dt = \frac{d}{dx} \left[\int_2^x t^2 \sin \left(\frac{\pi t}{4} \right) \, dt \right]_{x=2} = 4 \sin \left(\frac{\pi}{2} \right) \, dt = 4
\]