1. Suppose \(\int_1^3 f(x) \, dx = 6 \) and \(\int_1^3 g(x) \, dx = 2 \). What is \(\int_1^3 (2f(x) - 3g(x)) \, dx \)?

2. Suppose \(\int_1^4 f(x) = 8 \), \(\int_1^2 f(x) = 4 \), \(\int_4^f (x) = 2 \), what is \(\int_2^3 f(x) \)?

3. Find \(\int_0^1 x (\sqrt{x} + \sqrt[3]{x}) \, dx \)

4. If \(g(x) = \int_1^x \sqrt{t} \sin(t^2) \, dt \), find \(g'(x) \).

5. Let \(g(x) = \int_0^x f(t) \, dt \) where \(f(t) \) is the graph below. Determine which of the statements are true:
 - (a) \(g \) attains an absolute maximum at \(x = 2 \)
 - (b) \(g \) has a local maximum at \(x = 5 \)
 - (c) \(g \) has a local minimum at \(x = 4 \)
 - (d) \(g \) is concave down on \([0, 2]\)

6. Suppose \(f''(x) = -9 \sin 3x \) and \(f'(0) = 0 \) and \(f(0) = 2 \). Find \(f(\pi/4) \).

7. If \(f''(x) = \sin x \), \(f(0) = -3 \), \(f'(0) = 4 \) and \(f''(0) = 1 \). What is \(f(x) \)?

8. The three graphs below are \(f \), \(f' \) and \(f'' \). Identify which is which.

9. Write \(\int_2^{10} x^6 \, dx \) as a limit of Riemann Sums (right handed sums). (Your answer should be in summation notation.)

10. Suppose you know that \(\int_0^b f(x) \, dx = \ln(b + 1) \) for \(b > 0 \). What is \(\int_3^5 (3f(x) - 2) \, dx \)?

11. Find a function \(F(x) \) such that \(F''(x) = 4 + 6x + 24x^2 \), \(F(0) = 3 \), \(F(1) = 10 \).

12. Find \(\int_{-10}^6 |3x - 2| \, dx \)

13. \(\int_0^5 \frac{1}{3} x^3 \, dx = \lim_{n \to \infty} R_n \), where \(R_n \) is the right hand Riemann sum. Find \(R_n \).

14. \(\int_1^2 2x^2 + 1 \, dx = \lim_{n \to \infty} R_n \), where \(R_n \) is the right hand Riemann sum. Find \(R_n \).

15. Let \(g(x) = x^3 \). Find the Riemann sum \(L_4 \) for \(g(x) \) on the interval \([1, 3]\).

16. Evaluate the following limit by first recognizing it as a Riemann sum for a function defined on \([0, 1]\)

\[
\lim_{n \to \infty} \frac{1}{n} \left(\sqrt{\frac{1}{n}} + \sqrt{\frac{2}{n}} + \cdots + \sqrt{\frac{n}{n}} \right)
\]

17. Let \(g(x) = \int_x^2 \tan t \, dt \). Find \(g'(x) \).
18. Let \(F(x) = \int_{\tan x}^{\sec x} \sqrt{t^2 + 3} \, dx \). Evaluate \(F'(0) \).

19. If \(f(x) = \int_0^x (4 - t^3) e^t \, dt \), on what interval(s) is \(f \) decreasing and on what intervals is \(f \) increasing?

20. Find all values of \(x \) where \(F(x) = \int_0^x \frac{t^3 - 3t^2 + 2t}{e^t} \, dt \) has a local maximum or local minimum.

21. Find an antiderivative of \(e^{x^2} \sin(3x^2 + \ln x) \).

22. T/F. If \(f(x) \) is continuous and has a minimum of 3 on \([2, 4]\) then we can conclude \(\int_2^4 f(x) \, dx \geq 6 \).

23. T/F. Given \(\int_1^4 g(t) \, dt = -5 \) and \(\int_3^4 g(t) \, dt = 2 \) then \(\int_1^3 g(t) \, dt = -7 \).

24. Find \(\int_{\pi/3}^{b} \sin t \, dt \) for any \(b \).

25. If \(f(5) = 10 \) and \(\int_5^{100} f'(x) \, dx = 73 \), what is \(f(100) \)?

26. Find the value of \(t \) where \(f(t) \) has a local maximum:
\[
f(t) = \int_0^t \frac{2x^2 + x - 10}{1 + \sin^2 t} \, dx.
\]

27. Find an antiderivative of \(\frac{1}{\sqrt{x}} + e^{2x} + \sin 3x \).

28. Suppose you know the following about a function \(f(x) \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>-1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Find the Riemann Sum for \(\int_2^6 f(x) \, dx \) using 4 subintervals and right endpoints as sample points.

29. If \(x_i^* \) is a sample point from the \(i \)th subinterval of a regular partition of \([1, 3]\) into \(n \) subintervals, and \(\Delta x \) is the length of each subinterval, find: \(\lim_{n \to \infty} \sum_{i=1}^{n} \frac{3}{2} (x_i^*)^2 \Delta x \).

30. Let \(g(x) = \int_0^x f(t) \, dt \) where \(f \) is the function shown. Find \(g(5) \).

31. Let \(h(x) = \int_{1}^{1/x} \sqrt{1 + u^3} \, du \). Find \(h'(1/2) \).

32. Find \(\lim_{h \to 0} \frac{1}{h} \int_{2}^{2+h} t^2 \sin \left(\frac{\pi t}{4} \right) \, dt \).