5.3, 5.4: FTC

I. \[\frac{d}{dx} \int_a^x f(t) \, dt = f(x) \]

II. \[\int_a^b F'(x) \, dx = F(b) - F(a) \]

Warm-up Problems

1. **Clicker** Find the derivative

 \[\frac{d}{dx} \int_{-x^2}^{e^x} \sin(t^2) \, dt \]

 (a) \[e^x \sin(e^{2x}) - 2x \sin(x^4) \]
 (b) \[e^x \sin(e^{2x}) + 2x \sin(x^4) \]
 (c) \[\sin(e^{2x}) - \sin(x^4) \]
 (d) \[e^x \sin(e^{2x}) \]
 (e) I have no idea

2. Explain the MVT:

 ![Graph of MVT](image)

 Tangent Line
 Secant Line

 - Tangent Line
 - Secant Line
 - a
 - e
 - b

Class Problems

3. Find the following indefinite integrals using FTC part 2.

 (a) \[\int_{-4}^{12} dx = \]
 (b) \[\int_1^9 -2 \, dx = \]
 (c) \[\int_1^4 x \, dx = \]
 (d) \[\int_{-1}^{1} x^2 \, dx = \]
 (e) \[\int_0^\pi \sin x \, dx = \]
 (f) \[\int_1^{10} \frac{1}{x} \, dx = \]
 (g) \[\int_0^{\pi/4} \sec^2 x \, dx = \]
 (h) \[\int_1^4 x \, dx = \]
4. **Clicker**
(True/False) Any derivative formula gives a corresponding indefinite integral formula?
(a) True (b) False (c) Neither True or False

Review Problems

5. Suppose \(\int_{3}^{1} f(x) \, dx = 6 \) and \(\int_{1}^{3} g(x) \, dx = 2 \). What is \(\int_{1}^{3} (2f(x) - 3g(x)) \, dx \)?

6. Suppose \(\int_{1}^{4} f(x) = 8 \), \(\int_{1}^{2} f(x) = 4 \), \(\int_{3}^{4} f(x) = 2 \), what is \(\int_{2}^{3} f(x) = 8 \)?

7. Find \(\int_{0}^{1} x (\sqrt{x} + \sqrt[3]{x}) \, dx \)

8. If \(g(x) = \int_{1}^{x^2} \sin(t^2) \, dt \), find \(g'(x) \).

9. **Clicker** Let \(g(x) = \int_{0}^{x} f(t) \, dt \) where \(f(t) \) is the graph below. Determine which of the statements are true:

 (a) \(g \) attains an absolute maximum at \(x = 2 \)

 (b) \(g \) has a local maximum at \(x = 5 \)

 (c) \(g \) has a local minimum at \(x = 4 \)

 (d) \(g \) is concave down on \([0, 2]\)