Oct. 31st: 11.2 : Series

Warm-Up

1 Compute the following sums. Use a calculator to write your answer as a decimal.

 a. \(\sum_{n=1}^{2} \frac{1}{2^n} \)

 b. \(\sum_{n=1}^{6} \frac{1}{2^n} \)

 c. \(\sum_{n=1}^{12} \frac{1}{2^n} \)

In-Class Exercises

Defn. The \(N^{th} \) partial sum of the series \(\sum_{n=1}^{\infty} a_n \) is

\[
S_N = a_1 + \cdots + a_N = \sum_{n=1}^{N} a_n.
\]

If \(\lim_{N \to \infty} \{S_N\} = L \), then we say the series \(\sum_{n=1}^{\infty} a_n \) converges and equals \(L \). If \(\lim_{N \to \infty} \{S_N\} \), does not exist, we say the series \(\sum_{n=1}^{\infty} a_n \) diverges.

1. Find the value of the series \(\sum_{n=1}^{\infty} \frac{1}{2^n} \) or show that it diverges.

2. (Clicker) Let \(a \) and \(r \) be fixed constants. For which values of \(r \) does the geometric series \(\sum_{n=0}^{\infty} ar^n \) converge?

 a. all \(r \)

 b. \(0 \leq r \leq 1 \)

 c. \(-1 \leq r \leq 1 \)

 d. \(-1 < r < 1 \)

 e. \(-1 < r < 1 \)
3. Determine whether the following series converge or diverge. If they converge, find their value.

a. \[\sum_{n=0}^{\infty} \frac{3^{n+1}}{(-2)^n} \]

b. \[\sum_{n=1}^{\infty} \frac{3}{n(n+3)} \]

c. \[\sum_{n=0}^{\infty} \ln \left(\frac{n}{n+1} \right) \]

d. \[\sum_{n=0}^{\infty} \frac{(-\pi)^n}{e^n} \]

Properties of Series. Re-indexing Rule: If \(\{a_n\} \) is a sequence, then \(\sum_{n=k}^{\infty} a_n = \sum_{n=0}^{\infty} a_{n+k} \)

4. Let \(-1 < r < 1\) and let \(k \) be a positive integer. Find a formula for \(\sum_{n=k}^{\infty} ar^n \).