Sept. 21st: 6.3: Shell Method

Warm Up Exercises

1. Graph the region between \(y = \sin x \) and \(y = 0 \) from \(x = 0 \) to \(x = \pi \)

2. Rotate the region from (1) about the \(y \)-axis to obtain a solid. Try to compute the volume of this solid using the disk or washer method. What goes wrong?

In-Class Exercises

1. (clicker) The region between \(y = \sin x \) and \(y = 0 \) from \(x = 0 \) to \(x = \pi \) is revolved about the \(y \)-axis to form a solid. For \(i = 1, \ldots, n \), what is the shell radius \(r(x_i) \) and shell height \(h(x_i) \) of the \(i \)th shell?

 a. \(r(x_i) = x_i \), \(h(x_i) = \sin^{-1}(x_i) \)

 b. \(r(x_i) = \frac{x_i}{2} \), \(h(x_i) = \sin^{-1}(x_i) \)

 c. \(r(x_i) = x_i \), \(h(x_i) = \sin(x_i) \)

 d. \(r(x_i) = \frac{x_i}{2} \), \(h(x_i) = \sin(x_i) \)

Shell Method. Assume a solid \(S \) is obtained by revolving a region between \(x = a \) and \(x = b \) around a vertical line. Then

\[
\text{Volume}(S) = \int_a^b 2\pi r(x)h(x) \, dx,
\]

where \(r(x) \) is the shell radius and \(h(x) \) is the shell height of the resulting cylindrical shell formed at \(x \).

2. (clicker) The region between \(x = y^2 \) and \(x = 4 \) is revolved about the line \(x = 5 \) to form a solid. Fix \(x \). What is the shell radius \(r(x) \) and shell height \(h(x) \) for the cylindrical shell formed at \(x \)?

 a. \(r(x) = x \), \(h(x) = x^2 \)

 b. \(r(x) = 5 - x \), \(h(x) = \sqrt{x} \)

 c. \(r(x) = 5 - x \), \(h(x) = 2\sqrt{x} \)

 d. \(r(x) = x \), \(h(x) = \sqrt{x} \)
3. Using the shell method, compute the volume of the solid of the region obtained by rotating the region enclosed about the given curves about the given vertical line.

 a. $y = x^3, y = 0, x = 0, x = 1,$ about $x = 2$

 b. $y = 3x - 2, y = 6 - x, x = 0$ about the y axis

 c. $y = 1 - x^2, x = -1, x = 1,$ about $x = -1$

4. (clicker) The region between $x = \sqrt{y}, x = -y$ and $y = 2$ is is revolved about the line x-axis to form a solid. Fix y. What is the shell radius $r(y)$ and shell height $h(y)$ for the cylindrical shell formed at y?

 a. $r(y) = y, h(y) = \sqrt{y} + y$

 b. $r(y) = \sqrt{y}, h(y) = 2 - y$

 c. $r(y) = 2 - y, h(y) = \sqrt{y} - y$

 d. $r(y) = \sqrt{y} + y, h(y) = y$

5. Using the shell method, compute the volume of the solid of the region obtained by rotating the region enclosed about the given curves about the given horizontal line.

 a. $x = \sqrt{y}, x = -y$ and $y = 2,$ about the x-axis

 b. $x = \sqrt{y}, x = -y$ and $y = 2,$ about $y = 6$

 c. $y = 4 - x^2, x = 0, y = 0$ about the x-axis