Sept. 12th: 6.1 Area and 6.2 Volume

Warm Up Exercises

1. Write the following areas using integrals. Time permitting, compute the areas.
 a. The area of the region between \(f(x) = \frac{1}{x} \) and \(y = 0 \) (the x-axis) from \(x = 2 \) to \(x = 3 \).

 b. The area of the region bounded by the curves \(y = x - 2 \), the x-axis, \(x = 1 \), and \(x = 3 \).

2. Compute the volumes of the following solids:
 a. Solid 1:

 b. Solid 2:

 \[\text{area}(B) = \frac{3}{2}\pi \]

In-Class Exercises

Area Rule. If \(f(x) \) and \(g(x) \) are continuous and if \(f(x) \geq g(x) \) for all \(x \) in \([a, b]\), then the area of the region \(R \) bounded by the curves \(y = f(x) \) and \(y = g(x) \), \(x = a \), and \(x = b \) is

\[
\text{Area of } R = \int_{a}^{b} (f(x) - g(x)) \, dx.
\]

1. Compute the area of the region between the curves \(y = x \) and \(y = 6 - x^2 \).

2. (Clicker) True or False: If \(f(x) \) and \(g(x) \) are continuous, then the area of the region \(R \) bounded by the curves \(y = f(x) \) and \(y = g(x) \), \(x = a \), and \(x = b \) is

\[
\text{Area of } R = \int_{a}^{b} |f(x) - g(x)| \, dx.
\]

3. Express the following areas using integrals. Time-permitting, evaluate the integrals to compute the areas.
 a. The area of the region between \(y = 9 - x^2 \) and \(y = 5 \).

 b. The area of the region between \(y = x \) and \(y = 8 - x \) from \(x = 2 \) to \(x = 3 \).
c. The area of the region between \(y = \frac{x^2}{x^2 + 1} \) and \(y = \frac{5}{6} \).

Volume Rule. Let \(S \) be a solid lying between \(x = a \) and \(x = b \) with the area of its vertical cross sections (i.e. cross section perpendicular to the \(x \)-axis) given by \(A(x) \). If \(A(x) \) is continuous, then

\[
\text{Volume of } S = \int_a^b A(x) \, dx.
\]

1. (clicker) Let \(S \) be the solid whose base is enclosed by \(x = y^2 \) and \(x = 3 \) and whose cross sections are squares perpendicular to the \(x \)-axis. Give a formula for the area of a vertical cross section of \(S \) at any \(x \) between 0 and 3:
 a. \(x \)
 b. \(x^2 \)
 c. \(4x \)
 d. I don’t know, but I want a point for clicking in!

2. Let \(S \) be a pyramid with a square base of area 4 ft\(^2\) and a height of 12 ft. Find the volume of \(S \) by following these steps:
 a. Draw the pyramid with its top at the origin and its base at \(x = 12 \).
 b. Note that the vertical cross sections of \(S \) are always squares. Use similar triangles to determine the side length of the cross section at any \(x \) between 0 and 12.
 c. Use your answer in (b) to determine the area of a vertical cross section of \(S \) at \(x \).
 d. Use the Volume Rule and your answer from c to compute the volume of the pyramid.