September 2nd: 5.3: The Fundamental Theorem of Calculus

Extra Practice Exercise

1. Compute $\int_0^4 (x+3) dx$ using the limit definition of the definite integral, i.e. write:

$$\int_0^4 (x+3) dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*) \Delta x$$

and compute the right-hand-side by following these steps:

a. Break [0, 4] into n subintervals $[x_0, x_1], [x_1, x_2], \ldots, [x_{n-1}, x_n]$ of equal length Δx . Write down a formula for Δx . Write down a formula for x_i that works for $i = 1, 2, \ldots, n$.

$$\Delta X = \frac{4}{n}$$
 $X_i = \alpha + i\Delta X = \frac{4i}{n}$

b. Select sample points x_1^*, \ldots, x_n^* , one coming from each of the *n* subintervals. Specifically, for $i = 1, 2, \ldots, n$ choose $x_i^* = x_i$ from (a) and then write down a formula for $f(x_i^*)$.

$$x_i^* = \frac{4i}{n} f(x_i^*) = \frac{4i}{n} + 3$$

c. Plug your answers from (a) and (b) into the sum: $\sum_{i=1}^{n} f(x_{i}^{*}) \Delta x = \sum_{i=1}^{n} (4i/n + 3) \cdot \frac{4}{n}$

d. Using algebra and the formula $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$, simplify your formula from (c) so that it no

longer contains a
$$\sum_{i=1}^{n} \left[\frac{4i}{n} + 3 \right] \cdot \frac{4}{n} = \frac{16}{n^2} \cdot \frac{n(n+1)}{2} + 12 = \frac{8(n+1)}{n} + 12$$

Compute $\int_{-4}^{4} (x+3) dx$ by computing $\lim_{n \to \infty} \sum_{i=1}^{n} f(x^*) dx$ using your formula from (4)

e. Compute $\int_0^4 (x+3) dx$ by computing $\lim_{n\to\infty} \sum_{i=1}^n f(x_i^*) \Delta x$ using your formula from (d).

$$OE = EI + 8 = EI + \frac{N}{N} + \frac{N}{N} = XV(\frac{1}{2}X)f = 80$$

Warm-Up Exercise

2. (Clicker) Define $G(x) = \int_0^x f(t) dt$, where y = f(t) is graphed below. Using the area interpretation of the definite integral, compute G(0), G(1), G(2), G(3). Which is largest?

a.
$$G(0) = 0$$

$$\bigcirc G(1) = 3$$

c.
$$G(2) = a - 1 = 1$$

d.
$$G(3) = 1 - 12 + 12 = 1$$

Fundamental Theorem of Calculus (FTC). Let f be continuous on [a, b]. Then:

- Part 1: If $G(x) = \int_a^x f(t) dt$, then G is an antiderivative of f (i.e. G'(x) = f(x)).
- Part 2: If F is any antiderivative of f, then $\int_a^b f(t) dt = F(b) F(a)$.

Class-time Exercises

1. Compute the derivatives of the following functions using the FTC Part 1.

a.
$$G(x) = \int_0^x (t^5 - 9t^3) dt$$
 $G(x) = X^5 - 9 X^3$

b.
$$F(x) = \int_{x^2}^{x^4} \sqrt{t} \, dt = -\int_{0}^{X^2} \sqrt{t} \, dt + \int_{0}^{X^4} \sqrt{t} \, dt + \int_{0}^{X^4} \sqrt{t} \, dt = -\lambda X \sqrt{X^2} + 3X^4 \sqrt{X^4}$$

c.
$$H(x) = \int_{-6}^{\cos x} t^4 dt$$
 $H'(x) = (-Sinx) (\cos x)^4$

d.
$$I(x) = \int_{\sqrt{x}}^{x^2} \tan t \, dt = -\int_{0}^{\sqrt{x}} \tan t \, dt + \int_{0}^{x^2} \tan t \, dt$$

$$T'(x) = -\frac{1}{2} \cdot x^{1/2} \tan (\sqrt{x})$$

$$+ 2x \tan (x^2)$$

2. (Clicker) Which of the following is an antiderivative of $\ln x$?

a.
$$G(x) = \int_x^2 \ln x \ dx$$

b.
$$F(x) = x \ln x + x$$

- (c.) Neither of the above
- d. Both of the above