Warm-up Problems

1. **Clicker** For the graph below, the units of the horizontal axis, \(t \), is in seconds. The units of the vertical axis, \(v(t) \), is in feet per second.

![Graph of v(t) vs. t]

Shade in the area under the curve and above the horizontal axis between \(t = 1 \) and \(t = 5 \). The units of the area is:

(a) \(\text{ft}^2 \)
(b) \(\text{ft} \)
(c) \(\text{sec} \)
(d) \(\text{ft/sec} \)
(e) I don’t know but Prof Thornton is awesome

2. Estimate the area you shaded in Problem 1.

3. Compute the following:

(a) \(\sum_{i=1}^{5} \pi = \)
(b) \(\sum_{i=1}^{5} i = \)
(c) \(\sum_{i=1}^{5} i^2 = \)
(d) \(\sum_{i=1}^{5} (i + i^2) = \)
Class Problems

4. **Clicker** Compute \(\int_{-1}^{2} |x| \, dx \)

 (a) 1.5
 (b) 2
 (c) 2.5
 (d) 3

5. \(\int_{-5}^{0} \sqrt{25 - x^2} \, dx = \)

6. For this problem, we’re going to compute \(\int_{1}^{3} x^2 \, dx \) using a Riemann Sum.

 (a) \(a = \)
 (b) \(b = \)
 (c) \(\Delta x = \)
 (d) \(x_i = \)
 (e) RiemannSum =
 (f) Simplify the Riemann sum (goal: have an algebraic expression without any \(\sum \) symbols)
 (g) The definite integral is the limit of your Riemann sums as \(n \to \infty \). Find this.

Properties of the Definite Integral

I. \(\int_{a}^{b} c \, dx = c(b - a) \)

II. \(\int_{a}^{b} f(x) + g(x) \, dx = \int_{a}^{b} f(x) \, dx + \int_{a}^{b} g(x) \, dx \)

III. \(\int_{a}^{b} cf(x) \, dx = c \int_{a}^{b} f(x) \, dx \)

IV. \(\int_{a}^{b} f(x); dx = -\int_{b}^{a} f(x) \, dx \)

V. \(\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx \)

7. Suppose \(\int_{1}^{5} f(x) \, dx = 1 - \frac{1}{b} \). Using properties of integrals, compute:

 (a) \(\int_{1}^{5} f(x) \, dx = \)
 (b) \(\int_{1/2}^{1} f(x) \, dx = \)
 (c) \(\int_{1}^{6} 3f(x) - 4 \, dx = \)
 (d) \(\int_{3}^{5} f(x) \, dx = \)