Warm-up Problems

1. Let \(y = x^2 \).

 Compute left and right hand sums for the area between \(x = 1 \) and \(x = 4 \).

 (a) \(L_2 = \)
 (b) \(R_2 = \)
 (c) \(T_2 = \)
 (d) \(M_2 = \)
 (e) \(L_3 = \)
 (f) \(R_3 = \)
 (g) \(T_3 = \)
 (h) \(M_3 = \)
 (i) \(L_6 = \)
 (j) \(R_6 = \)
 (k) \(T_6 = \)
 (l) \(M_6 = \)
 (m) \(L_{100} = \)
 (n) \(R_{100} = \)
 (o) \(T_{100} = \)
 (p) \(M_{100} = \)

Lecture Problems

2. Compute \(\int_1^4 x^2 \, dx \)

 (a) \(\Delta x = \)
 (b) \(x_i = \)
 (c) Continue with this and simplify (using what you found above)

 \[
 \text{RHS} = \sum_{i=1}^{n} f(x_i) \Delta x =
 \]

 (d) Take the limit as \(n \to \infty \)

 \[
 \lim_{n \to \infty} \text{RHS} = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x = \lim_{n \to \infty} \text{(What you got in last problem)}
 \]