Warm-up Problems

1. Let \(f(x) = x^3 - 2x - 5 \). Find

 (a) \(f(0) = \)

 (b) \(f(3) = \)

 What does this mean (if anything) about roots of \(f \)?

2. Given the line
 \[
 y - y_0 = m(x - x_0)
 \]

 Find a formula for where this line crosses the \(x \)-axis.

Lecture Problems

3. Use the formula \(x_{n+1} = x_n + \frac{f(x_n)}{f'(x_n)} \) to approximate the roots to the functions. Use the starting \(x_1 \) and find \(x_2, x_3 \).

 (a) \(f(x) = x^2 - 2, \ x_1 = 2 \)

 (b) \(f(x) = \cos x - x, \ x_1 = 1 \)

 (c) \(f(x) = e^x - (x + 2), \ x_1 = 1 \)

4. Given the derivative of the functions below, find the function \(f(x) \).

 (a) \(f'(x) = 2x. \ f(x) = \)

 (b) \(f'(x) = \sin x. \ f(x) = \)

 (c) \(f'(x) = e^x. \ f(x) = \)

 (d) \(f'(x) = \frac{1}{x}. \ f(x) = \)

 (e) \(f'(x) = \ln x. \ f(x) = \)

 (f) \(f'(x) = x \cos(x^2). \ f(x) = \)

 (g) \(f'(x) = x + 4. \ f(x) = \)