Warm-up Problems

1. Determine if there is a slant asymptote and find it if there is one:

 (a) \[y = \frac{x^3 - 12x^2 + 38x - 17}{x^2 - 7} = x^2 - 5x + 3 + \frac{4}{x^2 - 7} \]

 Solution: No slant asymptote.

 (b) \[y = \frac{x^3 - 12x^2 + 38x - 17}{x^2 - 7} = x - 12 + \frac{45x - 101}{x^2 - 7} \]

 Solution: Slant asymptote: \(y = x - 12 \).

 (c) \[y = \frac{x^3 - 12x^2 + 38x - 17}{x^3 - 7} = 1 + \frac{-12x^2 + 38x - 10}{x^3 - 7} \]

 Solution: Horizontal asymptote: \(y = 1 \).

Lecture Problems

For the optimization problems below

- Identify what is being asked to optimize. Are you being asked to find a max or a min? (You probably want to draw a picture at this stage!)
- Find a function to represent what is to be optimized.
- Find the domain of your function.
- Optimize and solve the problem

2. Find 2 positive numbers whose sum is 50 and product is as large as possible.

 Solution: Maximize \(P = xy \) subject to \(x + y = 50 \). Substitute to get \(P = x(50 - x) \). Domain is \(x \in [0, 50] \). Maximum of \(P = 25^2 \) occurs when \(x = 25 \).

3. Find the point(s) on the curve \(y = 25 - x^2/4 \) closest to the origin.

 Solution: Minimize \(D = x^2 + (25 - x^2/4)^2 \). Domain is \(x \in (-\infty, \infty) \). Min occurs when \(x = \pm \sqrt{\frac{92}{4}} \).

4. A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a straight river. He needs no fence along the river. What are the dimensions of the field that has the largest area?

 Solution: Maximize \(A = xy \) subject to \(2x + y = 2400 \). Substitute and get \(A = 2400x - 2x^2 \). Domain is \(x \in [0, 1200] \). Maximum is 720,000 when \(x = 600 \) (and \(y = 1200 \)).

5. A window is being built and the bottom is a rectangle and the top is a semicircle. If there is 12 m of framing materials what must the dimensions of the window be to let in the most light?

 Solution: Maximize area \(A = 2hr + \frac{1}{2} \pi r^2 \). Constraint on perimeter is \(2h + 2r + \pi r = 12 \). Substitute to get \(A = 12r - (2 + \pi/2)r^2 \). Domain \(r \in [0, 12/(2 + \pi)] \).

 Maximum of \(A \approx 10.08 \) occurs when \(r = 12/(4 + \pi) \).
6. A triangle has an angle θ and side lengths of 3 on either side of the angle θ. Find the value of θ so that the isosceles triangle will have the largest area.

Solution: Let x be the other side of the triangle and y the height from the side x. So, we want to maximize $A = xy/2$. Use a little bit of trig to find x and y in terms of θ: $x = 6 \sin(\theta/2)$ and $y = 3 \cos(\theta/2)$. Domain is $\theta \in [0, \pi]$. Maximum occurs when $\theta = \pi/2$.