Warm-up Problems

1. What is an absolute maximum of \(f(x) \)? (How about an absolute minimum?)
 Solution: \(M \) is an absolute maximum if \(f(x) \leq M \) for all \(x \).

2. What is a local maximum of \(f(x) \)? (How about a local minimum?)
 Solution: \(M = f(c) \) is a local maximum if \(f(x) \leq M \) for all \(x \) near \(x = c \).

3. What is the extreme value theorem and how does it help us find maxima and minima?
 Solution: If \(f \) is continuous with domain \([a, b]\) then \(f \) has an absolute maximum and absolute minimum on the domain \([a, b]\).

4. What is a critical number? (Or a critical point?) What relevance do critical numbers have to finding extrema?

5. True/False
 (a) If \(M \) is an absolute maximum then \(M \) is also a local maximum. Solution: True
 (b) If \(M \) is a local maximum then \(M \) is also an absolute maximum. Solution: False
 (c) If \(f(x) \) is continuous on \([a, b]\) then \(f(x) \) can have only one maximum. Solution: False
 (d) If \(f(x) \) has an absolute maximum at \(x = c \) then \(f'(c) = 0 \). Solution: False
 (e) If \(f(x) \) has a local maximum at \(x = c \) then \(f'(c) = 0 \). Solution: False
 (f) Some functions have local extrema but no absolute extrema. Solution: True
 (g) Some functions have no local extrema and no absolute extrema. Solution: True

6. Drawing Problems
 (a) Draw an example of a function that has domain \([0, 10]\), absolute maximum of 100 at \(x = 5 \) and an absolute minimum of \(-100\) at \(x = 8 \).
 (b) Draw an example of a function that has domain \([0, 10]\), absolute maximum of \(-100\) at \(x = 5 \) and an absolute minimum of 100 at \(x = 8 \).
 (c) Draw an example of a function that has domain \([0, 10]\), local maximum of \(-100\) at \(x = 5 \) and an local minimum of 100 at \(x = 8 \).

7. Let \(f(x) = 3x^3 - 3x^3 \) on the domain \(D = [-1, 4] \).
 (a) Find all critical points (critical numbers). Solution: \(x = 0 \) and \(x = 1 \).
(b) Find all absolute maxima and minima of \(f(x) \) on \([-1, 4]\). \textbf{Solution:} Plug in all points into \(f \):

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>7</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>4</td>
<td>512</td>
</tr>
</tbody>
</table>

\textbf{Lecture Problems}

8. Let \(f(x) = x^2 - x \) on \([0, 1]\).

 (a) Find the slope of the secant line connecting \((0, f(x))\) and \((1, f(1))\). \textbf{Solution:} \(m = 0 \)

 (b) Find the \(x \) value, \(c \), in \((0, 1)\), such that \(f'(c) \) is equal to the slope of the secant line you found. \textbf{Solution:} \(c = 1/2 \)

9. Same as Problem 8 but with domain \([-1, 6]\).
 \textbf{Solution:} \(m = 4 \) and \(c = 5/2 \)

10. Same as Problem 8 but with domain \([2, 10]\).
 \textbf{Solution:} \(m = 11 \) and \(c = 6 \)

11. Same as Problem 8 but with \(f(x) = |x| \) and domain \([2, 10]\).
 \textbf{Solution:} \(m = 1 \) and any \(c \in (2, 10) \) will work.

12. Same as Problem 8 but with \(f(x) = |x| \) and domain \([-1, 1]\).
 \textbf{Solution:} \(m = 0 \) but no \(c \in (2, 10) \) will work.