Warm-up Problems

1. Let $f(x) = x^2 + x$ and let $g(x) = 3(x - 1) + 2$.
 (a) At $x = 1$, does the graph of f have positive or negative slope?
 (b) At $x = 1$, does the graph of g have positive or negative slope?
 (c) Find an approximation $f(1.1) \approx$
 (d) Find an approximation $g(1.1) \approx$
 (e) Explain the relationship between $f(x)$ and $g(x)$.

2. (More complicated version of previous problem)
 Let $f(x) = \frac{\cos\left(\frac{1}{6} \pi x\right) \log(x)}{x^2 + x + 1}$ and let $g(x) = \frac{1}{6} \sqrt{3}(x - 1)$.
 (a) At $x = 1$, does the graph of f have positive or negative slope?
 (b) At $x = 1$, does the graph of g have positive or negative slope?
 (c) Find an approximation $f(1.1) \approx$
 (d) Find an approximation $g(1.1) \approx$
 (e) Explain the relationship between $f(x)$ and $g(x)$.

Lecture Problems

3. Linearize the functions at the given points.
 (a) $f(x) = x^2 + x$, at $x = 1$
 (b) $f(x) = \sqrt{x}$, at $x = 64$
 (c) $f(x) = \cos(x)$, at $x = \frac{1}{6} \pi$
 (d) $f(x) = -x^2 + 12$, at $x = 2$
 (e) $f(x) = \log(x + 1)$, at $x = 0$
 (f) $f(x) = \frac{x}{x+1}$, at $x = 1$

4. Test Oct 22! Covers Sections 3.1-3.11:
 (a) Derivatives and Tangents. Limit definition.
 (b) Differentiation Rules and Formulas. All of them.
 (c) Implicit differentiation.
 (d) Derivatives of inverse functions.
 (e) Related Rates.
 (f) Linearizations.