1. Match the graphs to the functions

(a) \(f(x, y) = xy^2 \)
(b) \(f(x, y) = yx^2 \)
(c) \(f(x, y) = x^2 \)
(d) \(f(x, y) = y^2 \)
(e) \(f(x, y) = e^{y-x} \)
(f) \(f(x, y) = xe^y \)
2. Compute the integrals
 (a) \(\int_1^2 \sqrt{2x + 3} \, dx = \)
 (b) \(\int \frac{x^2}{x^3 + 1} \, dx = \)

3. Find the area between the curves \(y = 2x - x^2 \) and \(y = -x \).

4. Find the area between \(y = x^3 \) and \(y = 4x \).

5. Find the derivatives of the functions
 (a) \(f(x) = x^{2x} \)
 (b) \(f(x) = \ln \left(\frac{x+1}{x-1} \right) \)

6. For the functions below, find \(f_x, f_y, f_{xx}, f_{yy}, f_{xy} \) and \(f_{yx} \).
 (a) \(f(x, y) = xy - \ln(x - y) \)
 (b) \(f(x, y) = x \ln(x - y) \)

7. The Sierra Club has determined that the rate of seepage of toxic chemicals from a waste dump, in gallons per year, is given by
 \[
 R(t) = \frac{1000}{(1 + t)^2}
 \]
 where \(t \) is the time in years since the discovery of the seepage. Find the total amount of toxic chemicals that seep from the dump during the first 4 years after the seepage is discovered.