Warm-up Problems - February 2, 2007
Solutions

1. Let \(f(x, y) = x^4 - 4xy + y^4 \)

 (a) \(f_x = 4x^3 - 4y \)

 (b) \(f_y = 4y^3 - 4x \)

 (c) \(f_{xx} = 12x^2 \)

 (d) \(f_{yy} = 12y^2 \)

 (e) \(f_{xy} = -4 \)

 (f) \(D = f_{xx}f_{yy} - (f_{xy})^2 = 144x^2y^2 - 16 = 16(9x^2y^2 - 1) \)

2. List the steps discussed in class for finding the maximum and minimum of a function \(f(x, y) \).
 Solution:

 I. Find the critical points by setting the first partials to zero:

 \(f_x(x, y) = 0 \quad f_y(x, y) = 0 \)

 II. Test the critical points:

 - Find \(D = f_{xx}f_{yy} - (f_{xy})^2 \)
 - Plug each critical point into \(D \).

 - If \(D > 0 \) then the critical point is either a maximum or a minimum.

 * If \(f_{xx} > 0 \) then the critical point is a minimum

 * If \(f_{xx} < 0 \) then the critical point is a maximum

 - If \(D < 0 \) then the critical point is a saddle.

 - If \(D = 0 \) then the test fails and you have to find another approach.

3. Find all critical points of the functions

 (a) \(f(x, y) = x^2 + xy + y^2 - 3x \)
 Solution: \((2, -1) \)

 (b) \(f(x, y) = xy - x^3 - y^2 \)
 Solution: \((0, 0) \) and \((\frac{1}{6}, \frac{1}{12}) \)

4. Find if the critical points found in Problem 3 are maximums, minimums or saddles.

 (a) \(D(2, -1) = 3 \) and \(f_{xx}(2, -1) = 2 \) so we have a minimum at \((2, -1) \).

 (b) \(D(0, 0) = -1 \) so we have a saddle at \((0, 0) \).
 \(D\left(\frac{1}{6}, \frac{1}{12}\right) = 1 \) and \(f_{xx}\left(\frac{1}{6}, \frac{1}{12}\right) = -1 \) so we have a maximum at \(\left(\frac{1}{6}, \frac{1}{12}\right) \).
Lecture Problems

5. Find the area between \(y = x^2 - 3x \) and \(y = 2x \)

Solution: They intersect at \(x = 0, 5 \) and the area is \(\frac{125}{6} \)

6. Income stream has a flow rate of \(f(t) = 10e^{0.1t} \) dollars per year. Find the income produced by this income stream in the first two years.

Solution:

\[
\text{Income} = \int_0^2 10e^{0.1t} \, dt = 10e^{0.2} - 100 \approx 22.14
\]

7. Income stream has a flow rate of \(f(t) = 10e^{0.1t} \) dollars per year. The money is invested at \(6\% \) interest compounded continuously. Find the future values of this income stream in the first two years.

Solution:

\[
\text{FV} = \int_0^2 10e^{0.1t}e^{0.04(2-t)} \, dt = e^{.12}(250e^{0.8} - 250) \approx 23.48
\]

8. Compute the integrals

(a)

\[
\int 2^x \, dx = \frac{e^{x\ln 2}}{\ln 2} = \frac{2^x}{\ln 2}
\]

(b)

\[
\int \frac{3x^5 - 2}{(x^6 - 4x + 12)^3} \, dx = \frac{1}{2} \int \frac{du}{u^{3/4}} = -\frac{1}{66(x^6 - 4x + 12)^{3/4}}
\]