1. If C is a constant, find the derivative:

(a) $y = -3x + \frac{C}{x}$
 Solution: $y' = -3 - \frac{C}{x^2}$

(b) $y = \frac{x}{2} - 1 + \frac{C}{x}$
 Solution: $y' = \frac{1}{2} - \frac{C}{x^2}$

(c) $y = -1 + Cx$
 Solution: $y' = C$
Lecture Problems

2. Draw the slope field for the differential equations

(a) \(y' = y + 1 \)

Solution:

\[
y' = y + 1
\]
(b) $\frac{dy}{dx} = x + 1$

Solution: $y' = x + 1$
3. Verify that the given solutions are really solutions to the given differential equations.

 (a) \(xy' + 1 = x - y \)
 \[
y = \frac{x}{2} - 1 + \frac{C}{x}.
 \]

 (b) \(xy' = y + 1 \)
 \[
y = -1 + Cx
 \]

4. Given the general solutions, solve the initial value problem.

 (a) \(xy' + 1 = x - y, \ y(1) = 2 \)
 \[
y = \frac{x}{2} - 1 + \frac{(5/2)}{x}
 \]
 Solution:

 (b) \(xy' = y + 1, \ y(2) = 5 \)
 \[
y = -1 + Cx
 \]
 Solution:

 \[
y = -1 + 3x
 \]