Math 331: Homework 11, Due Dec 2

- 1. Prove or disprove: The group of units in \mathbb{Z}_7 (with multiplication) is isomorphic to $(\mathbb{Z}_6, +)$.
- 2. Suppose G is cyclic of order n and H is cyclic of order n. Prove that G is isomorphic to H.
- 3. Find a non-trivial homomorphism from $\mathbb{Z}_3 \to \mathbb{Z}_6$.
- 4. Find a non-trivial homomorphism from $\mathbb{Z}_6 \to \mathbb{Z}_3$.
- 5. Find a non-trivial homomorphism from $\mathbb{Z}_6 \to \mathbb{Z}_4$.
- 6. Find a non-trivial homomorphism from $\mathbb{Z}_6 \to \mathbb{Z}_5$.
- 7. Find all the generators of \mathbb{Z}_8 , \mathbb{Z}_{12} and \mathbb{Z}_7 .
- 8. Find all the generators of the group of units of \mathbb{Z}_7 .
- 9. Is the group of units of \mathbb{Z}_{20} a cyclic group? If so, find a generator. If not, prove that it is not cyclic.
- 10. Find all elements in \mathbb{Z}_{60} that have order 5.
- 11. Find an isomorphism from (\mathbb{R}^+, \cdot) to $(\mathbb{R}, +)$. Hint, we did something similar in class.