Math 331: Homework 11, Due Dec 2

1. Prove or disprove: The group of units in \mathbb{Z}_{7} (with multiplication) is isomorphic to $\left(\mathbb{Z}_{6},+\right)$.
2. Suppose G is cyclic of order n and H is cyclic of order n. Prove that G is isomorphic to H.
3. Find a non-trivial homomorphism from $\mathbb{Z}_{3} \rightarrow \mathbb{Z}_{6}$.
4. Find a non-trivial homomorphism from $\mathbb{Z}_{6} \rightarrow \mathbb{Z}_{3}$.
5. Find a non-trivial homomorphism from $\mathbb{Z}_{6} \rightarrow \mathbb{Z}_{4}$.
6. Find a non-trivial homomorphism from $\mathbb{Z}_{6} \rightarrow \mathbb{Z}_{5}$.
7. Find all the generators of $\mathbb{Z}_{8}, \mathbb{Z}_{12}$ and \mathbb{Z}_{7}.
8. Find all the generators of the group of units of \mathbb{Z}_{7}.
9. Is the group of units of \mathbb{Z}_{20} a cyclic group? If so, find a generator. If not, prove that it is not cyclic.

10 . Find all elements in \mathbb{Z}_{60} that have order 5 .
11. Find an isomorphism from $\left(\mathbb{R}^{+}, \cdot\right)$ to $(\mathbb{R},+)$. Hint, we did something similar in class.

