Math 331: Homework 9, Due Nov 4

- 1. Determine if $x^3 + 2x + 1$ and $x^4 + 3x 3$ are congruent (mod $x^2 + 2x + 2$) in $\mathbb{Q}[x]$.
- 2. Determine if $x^4 + x^3 + x^2 + 2$ and $x^3 + 1$ are congruent (mod $x^2 + 2$) in $\mathbb{Z}_3[x]$.
- 3. Prove that if F is a field, $c \in F$, $f(x) \in F[x]$, then $f(x) \equiv f(c) \pmod{x-c}$.
- 4. Find the principal representative of each of the following
 - (a) $x^3 x + 1$, (mod x + 2) in $\mathbb{Q}[x]$. (b) $x^7 + x + 1$, (mod $x^3 + x + 1$) in $\mathbb{Z}_3[x]$. (c) $x^4 + 2x + 4$, (mod $x^2 + 1$) in $\mathbb{Z}_5[x]$. (d) $x^3 - x + 1$, (mod x + 2) in $\mathbb{Q}[x]$. (e) $x^7 + x + 1$, (mod $x^3 + x + 1$) in $\mathbb{Z}_3[x]$. (f) $x^4 + 2x$, (mod $x^2 + 1$) in $\mathbb{Q}[x]$. (g) $x^3 + 3x^2 - 2x + 3$, (mod $x^3 + x + 1$) in $\mathbb{Q}[x]$. (h) x^5 , (mod $x^3 + x + 1$) in $\mathbb{Q}[x]$. (i) $x^6 + x^3 + 1$, (mod $x^3 + x + 1$) in $\mathbb{Q}[x]$.
- 5. Find a complete set of representatives of

$$\frac{Z_2[x]}{(x^4 + x^2 + 1)}$$

6. Find a complete set of representatives and write out the multiplication table for

$$\frac{Z_2[x]}{(x^2+x+1)}$$