Math 331: Homework 9, Due Nov 4

1. Determine if $x^{3}+2 x+1$ and $x^{4}+3 x-3$ are congruent $\left(\bmod x^{2}+2 x+2\right)$ in $\mathbb{Q}[x]$.
2. Determine if $x^{4}+x^{3}+x^{2}+2$ and $x^{3}+1$ are congruent $\left(\bmod x^{2}+2\right)$ in $\mathbb{Z}_{3}[x]$.
3. Prove that if F is a field, $c \in F, f(x) \in F[x]$, then $f(x) \equiv f(c)(\bmod x-c)$.
4. Find the principal representative of each of the following
(a) $x^{3}-x+1,(\bmod x+2)$ in $\mathbb{Q}[x]$.
(b) $x^{7}+x+1,\left(\bmod x^{3}+x+1\right)$ in $\mathbb{Z}_{3}[x]$.
(c) $x^{4}+2 x+4,\left(\bmod x^{2}+1\right)$ in $\mathbb{Z}_{5}[x]$.
(d) $x^{3}-x+1,(\bmod x+2)$ in $\mathbb{Q}[x]$.
(e) $x^{7}+x+1, \quad\left(\bmod x^{3}+x+1\right)$ in $\mathbb{Z}_{3}[x]$.
(f) $x^{4}+2 x,\left(\bmod x^{2}+1\right)$ in $\mathbb{Q}[x]$.
(g) $x^{3}+3 x^{2}-2 x+3,\left(\bmod x^{3}+x+1\right)$ in $\mathbb{Q}[x]$.
(h) $x^{5},\left(\bmod x^{3}+x+1\right)$ in $\mathbb{Q}[x]$.
(i) $x^{6}+x^{3}+1,\left(\bmod x^{3}+x+1\right)$ in $\mathbb{Q}[x]$.
5. Find a complete set of representatives of

$$
\frac{Z_{2}[x]}{\left(x^{4}+x^{2}+1\right)}
$$

6. Find a complete set of representatives and write out the multiplication table for

$$
\frac{Z_{2}[x]}{\left(x^{2}+x+1\right)}
$$

