Math 331: Homework 7, Due Oct 21

1. Using only techniques discussed in class and/or the text, factor completely over \mathbb{C} :
(a) $x^{5}-19 x^{4}+139 x^{3}-485 x^{2}+800 x-500=(x-5)^{3}(x-2)^{2}$
(b) $x^{6}-12 x^{5}+58 x^{4}-144 x^{3}+193 x^{2}-132 x+36=(x-3)^{2}(x-2)^{2}(x-1)^{2}$
(c) $x^{4}-14 x^{3}+71 x^{2}-154 x+120=(x-5)(x-4)(x-3)(x-2)$
(d) $x^{5}-5 x^{4}+7 x^{3}-2 x^{2}+4 x-8=(x-2)^{3}\left(x^{2}+x+1\right)$
(e) $x^{6}+x^{5}+5 x^{4}+4 x^{3}+8 x^{2}+4 x+4=\left(x^{2}+2\right)^{2}\left(x^{2}+x+1\right)$
(f) $x^{4}+x^{3}+3 x^{2}+2 x+2=\left(x^{2}+2\right)\left(x^{2}+x+1\right)$
2. Let K be a field and $f, g \in K[x]$. Prove that for any $a, b \in K$:

$$
D(a f+b g)=a D(f)+b D(g)
$$

3. Suppose characteristic of K is 0 . Let $f \in K[x]$ be such that $\operatorname{deg} f>1$. Show $\operatorname{deg} D(f)=$ $(\operatorname{deg} f)-1$.
4. Assuming the product rule, prove the chain rule (using induction):

$$
D\left(p(x)^{k}\right)=k(p(x))^{k-1} D(p(x))
$$

Solution: This is true for $k=1$. Assume true for $k<n$. Then

$$
\begin{aligned}
D\left(p(x)^{n}\right) & =D\left(p^{n-1} p\right)=D\left(p^{n-1}\right) p+p^{n-1} D p \\
& =(n-1) p^{n-2} p^{\prime} p+p^{n-1} p^{\prime}=n p^{n-1} p^{\prime}
\end{aligned}
$$

5. Suppose characteristic of K is 0 . Let $f \in K[x]$ is

$$
f=p(x)^{k} q(x)
$$

where $k>1$ and $\operatorname{deg} p>0$. Show that $p(x)^{k-1}$ is a factor of $D(f)$.
Solution: Take the derivative using the product rule:

$$
\begin{aligned}
D f & =D\left(p^{k} q\right)=D\left(p^{k}\right) q+p^{k} D(q) \\
& =k p^{k-1} p^{\prime} q+p^{k} q^{\prime}=p^{k-1}\left(k p^{\prime} q+q^{\prime}\right)
\end{aligned}
$$

6. Find a non-zero polynomial in $\mathbb{Z}_{3}[x]$ that has zero has its derivative.
7. Let p be a prime. Characterize all nonconstant polynomials in $\mathbb{Z}_{p}[x]$ that have derivative 0 .
