Math 331: Homework 6, Due Oct 12

The Gaussian Integers, denoted $\mathbb{Z}[i]$ is the set

$$
\mathbb{Z}[i]=\{a+i b \mid a, b \in \mathbb{Z}\}
$$

where i is the complex number $i=\sqrt{-1}$. Addition and multiplication in $\mathbb{Z}[i]$ is inherited from \mathbb{C}.

1. Given $a+b i \in \mathbb{Z}[i]$, define the norm of $a+b i$ to be

$$
N(a+b i)=a^{2}+b^{2}
$$

Show that this norm is multiplicative. In other words, show that for any $z_{1}, z_{2} \in \mathbb{Z}[i]$, you have

$$
N\left(z_{1} z_{2}\right)=N\left(z_{1}\right) N\left(z_{2}\right)
$$

Solution: This is just a matter of computing:

$$
\begin{aligned}
N((a+b i)(c+d i)) & =N((a c-b d)+(a d+b c) i)=(a c-b d)^{2}+(a d+b c)^{2} \\
& =a^{2} c^{2}+a^{2} d^{2}+b^{2} c^{2}+b^{2} d^{2} \\
N(a+b i) N(c+d i) & =\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=a^{2} c^{2}+a^{2} d^{2}+b^{2} c^{2}+b^{2} d^{2}
\end{aligned}
$$

2. Find all the units in $\mathbb{Z}[i]$. Justify your answer.

Solution: We can use our knowledge of complex numbers. The multiplicative inverse of $a+b i$ is $(a-b i) /\left(a^{2}+b^{2}\right)$. Thus a unit must have $a^{2}+b^{2}=1$. In order for this to be the case, we must either have $a= \pm 1, b=0$ or $a=0, b= \pm 1$. Thus our units are: $\{ \pm 1, \pm i\}$.
3. We will say that a number in $x \in \mathbb{Z}[i]$ is prime if you have $x=y z$ (where $y, z \in \mathbb{Z}[i]$) then either y or z is a unit.
(a) Show that 2 is not prime in $\mathbb{Z}[i]$.

Solution: $2=(1-i)(1+i)$
(b) Show that $1-i$ is prime in $\mathbb{Z}[i]$.

Solution: Notice that $z \in \mathbb{Z}[i]$ is a unit if and only if $N(z)=1$. In this case $N(1-i)=2$ and therefore if $z=x y$ then $N(z)=2=N(x) N(y)$. Thus, either x or y is a unit. $1-i$ must be prime.
(c) Show that 3 is prime in $\mathbb{Z}[i]$.

Solution: If $x \in \mathbb{Z}[i]$ is such that $x \mid 3$ then $N(x) \mid 9$ and thus $N(x)=3$ or $N(x)=9$. If $N(x)=9$ then x is an associate of $3(x$ is a unit times 3). If $N(x)=3$ and $x=a+b i$ then we have $a^{2}+b^{2}=3$, which has no integer solutions.
4. (a) Find all the divisors of 10 in $\mathbb{Z}[i]$.

Solution: Here are the prime divisors:

$$
1+i, 1-i, 2+i, 2-i
$$

(b) Show that any Gaussian integer has only finitely many divisors.

Solution: First note that there are only finitely many numbers with a given norm. In other words, given $n \in \mathbb{N}$, there are only finitely many solutions to $a^{2}+b^{2}=n$.
Thus, if $z \in \mathbb{Z}[i]$ has norm $N(z)$ then the list of divisors of z must have norms which divide $N(z)$. There are finitely many integer divisors of $N(z)$, each of which has finite many possibilities for Gaussian integers with that norm.
5. Let $p \in \mathbb{Z}$ be a prime integer. Prove that either p is a Gaussian prime or else it is the product of two complex conjugate Guassian primes: $p=\alpha \bar{\alpha}$.
Solution: Here is an important result that you should be able to prove that I'll use:
Lemma. If $\alpha, \beta \in \mathbb{C}$ such that the imaginary part of α is not zero then there exists $r \in \mathbb{R}$ such that $\beta=r \bar{\alpha}$.

Suppose $p=x y$ where $x, y \in \mathbb{Z}[i]$ are not units. $N(p)=p^{2}$ and therefore if $x y=p$ we must have $N(x) N(y)=p^{2}$. Since x, y are not units, we must have $N(x)=N(y)=p$. Now, applying the lemma, you should be able to see that $x=\bar{y}$, and we're done.
6. Let $\alpha \in \mathbb{Z}[i]$ be a prime Gaussian integer. Prove that either $\alpha \bar{\alpha}$ is a prime integer or else $\alpha \bar{\alpha}$ is the square of a prime integer.

