Math 331: Homework 5, Due Oct 7

1. (a) Find all polynomials in $\mathbb{Z}_{3}[x]$ of degree ≤ 3. Determine which are irreducible.
(b) Determine how many different polynomials there are of degree m in $\mathbb{Z}_{p}[x]$ (where p is a prime).
Solution: For there are $(p-1)$ choices for the leading coefficient and p choices for the other $m-1$ coefficients. Thus, we have $(p-1) p^{m}$ different polynomials.
2. Find two examples of polynomial in $\mathbb{Z}_{6}[x]$ that have more roots than the degree of the polynomial.
3. Use the Euclidean Algorithm to find the gcd of the polynomials
(a) $f(x)=x^{3}+x^{2}-5 x-2$ and $g(x)=x^{4}-2 x^{3}-x+2$ in $\mathbb{Q}[x]$.
(b) $f(x)=x^{3}+2 x+2$ and $g(x)=x^{4}+3 x^{3}+4 x+2$ in $\mathbb{Z}_{5}[x]$.
(c) $f(x)=x^{3}+x^{2}+x+1$ and $g(x)=x^{4}+x^{2}+1$ in $\mathbb{Z}_{2}[x]$.
4. Factor completely in $\mathbb{Z}_{2}[x]$.
(a) $x^{4}+x^{2}$
(b) $x^{4}+x^{3}+x$
(c) $x^{4}+x^{3}+x^{2}+x$
(d) $x^{4}+x^{3}+x^{2}+x+1$
5. Consider polynomials $f, g \in K[x]$. How is $\operatorname{deg}(f \circ g)$ related to $\operatorname{deg} f$ and $\operatorname{deg} g$? Prove your result.
