Math 331: Homework 5, Due Oct 7

- 1. (a) Find all polynomials in $\mathbb{Z}_3[x]$ of degree ≤ 3 . Determine which are irreducible.
 - (b) Determine how many different polynomials there are of degree m in Z_p[x] (where p is a prime).
 Solution: For there are (p − 1) choices for the leading coefficient and p choices for the other m − 1 coefficients. Thus, we have (p − 1)p^m different polynomials.
- 2. Find two examples of polynomial in $\mathbb{Z}_6[x]$ that have more roots than the degree of the polynomial.
- 3. Use the Euclidean Algorithm to find the gcd of the polynomials
 - (a) $f(x) = x^3 + x^2 5x 2$ and $g(x) = x^4 2x^3 x + 2$ in $\mathbb{Q}[x]$.
 - (b) $f(x) = x^3 + 2x + 2$ and $g(x) = x^4 + 3x^3 + 4x + 2$ in $\mathbb{Z}_5[x]$.
 - (c) $f(x) = x^3 + x^2 + x + 1$ and $g(x) = x^4 + x^2 + 1$ in $\mathbb{Z}_2[x]$.
- 4. Factor completely in $\mathbb{Z}_2[x]$.
 - (a) $x^4 + x^2$
 - (b) $x^4 + x^3 + x$
 - (c) $x^4 + x^3 + x^2 + x$
 - (d) $x^4 + x^3 + x^2 + x + 1$
- 5. Consider polynomials $f, g \in K[x]$. How is deg $(f \circ g)$ related to deg f and deg g? Prove your result.