Math 331: Homework Due Sept 30

1. Let R be a ring.
$r \in R$ is called a zero divisor if there is an element $x \in R, x \neq 0$ such that $x r=r x=0$.
If R has a multiplicative idenity, $r \in R$ is called a unit if there is an element $x \in R$, such that $x r=r x=1$.
(a) Find all zero divisors and all units in \mathbb{Z}_{12}.
(b) Find all zero divisors and all units in \mathbb{Z}_{13}.
(c) Find all zero divisors and all units in \mathbb{Z}_{14}.
(d) Prove or disprove the following statement: It is possible for an element of \mathbb{Z}_{n} to be both invertible and a zero divisor.
Solution: Let R be any ring with identity. Suppose $a \in R$ is a unit. Then, $\exists b \in R$ such that $a b=b a=1$. Suppose that $\exists c \in R$ such that $a c=0$. Then,

$$
\begin{aligned}
b \cdot(a c) & =b \cdot 0=0 \\
(b a) c & =0 \\
1 \cdot c & =c=0
\end{aligned}
$$

and therefore a can not be a zero divisor.
2. Prove or disprove: Let $x \in \mathbb{Z}_{n}$ be a unit. The the multiplicative inverse of x is unique.

Solution: Let R be an ring with identity and suppose $a \in R$ is a unit. Then there exists an inverse $b \in R: a b=b a=1$. Suppose c is also an inverse of a. Then

$$
b=1 \cdot b=(c a) b=c(a b)=c \cdot 1=c
$$

and $c=b$ and the inverse is unique.
3. Let K be a field (for example \mathbb{Q}). Prove that for $f, g \in K[x]$ we have
(a) $\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)$

Solution: If $\operatorname{deg} f$ or $\operatorname{deg} g$ is $-\infty$ then the equality clearly holds. Thus, lets assume that $\operatorname{deg} f, \operatorname{deg} g \geq 0$. Without loss of generality, we can assume that $\operatorname{deg} g=m \leq \operatorname{deg} f=n$.
Then we can write

$$
\begin{aligned}
& f=\sum_{k=0}^{n} a_{k} x^{k} \\
& g=\sum_{k=0}^{m} b_{k} x^{k}
\end{aligned}
$$

where $n \leq m, a_{n} \neq 0 \neq b_{m}$. Then,

$$
f g=\sum_{j=0}^{n+m}\left(\sum_{k+l=j} a_{k} b_{l}\right) x^{j}
$$

It is clear from the definition that the highest power of x is x^{n+m}. And, the coefficient of x_{n+m} is

$$
\sum_{k+l=n+m} a_{k} b_{l}=a_{n} b_{m} \neq 0
$$

Thus, $\operatorname{deg}(f g)=\operatorname{deg} f+\operatorname{deg} g$. (Note: $a_{n} b_{m} \neq 0$ since we are in a field, this would not hold true if we were in something like \mathbb{Z}_{6}.)
(b) $\operatorname{deg}(f+g) \leq \max \{\operatorname{deg}(f), \operatorname{deg}(g)\}$

Solution: If $\operatorname{deg} f$ or $\operatorname{deg} g$ is $-\infty$ then the equality clearly holds. Thus, lets assume that $\operatorname{deg} f, \operatorname{deg} g \geq 0$. Without loss of generality, we can assume that $\operatorname{deg} g=m \leq \operatorname{deg} f=n$. Then we can write

$$
\begin{aligned}
& f=\sum_{k=0}^{n} a_{k} x^{k} \\
& g=\sum_{k=0}^{m} b_{k} x^{k}
\end{aligned}
$$

where $n \leq m, a_{n} \neq 0 \neq b_{m}$. Then, by definition,

$$
f+g=\sum_{k=0}^{n}\left(a_{k}+b_{k}\right) x^{k}
$$

where b_{k} is defined to be 0 for $k>m$.
Looking at this definition, it is clear that the highest power of k is n and therefore $\operatorname{deg}(f+$ $g) \leq n$.
As a note, it is clear that it would be possible to actually have $\operatorname{deg}(f+g) \neq n$, in the case where terms cancelled.

