Math 331: Homework Due Sept 30

1. Let R be a ring.

 $r \in R$ is called a zero divisor if there is an element $x \in R$, $x \neq 0$ such that xr = rx = 0.

If R has a multiplicative idenity, $r \in R$ is called a *unit* if there is an element $x \in R$, such that xr = rx = 1.

- (a) Find all zero divisors and all units in \mathbb{Z}_{12} .
- (b) Find all zero divisors and all units in \mathbb{Z}_{13} .
- (c) Find all zero divisors and all units in \mathbb{Z}_{14} .
- (d) Prove or disprove the following statement: It is possible for an element of \mathbb{Z}_n to be both invertible and a zero divisor.

Solution: Let R be any ring with identity. Suppose $a \in R$ is a unit. Then, $\exists b \in R$ such that ab = ba = 1. Suppose that $\exists c \in R$ such that ac = 0. Then,

$$b \cdot (ac) = b \cdot 0 = 0$$
$$(ba)c = 0$$
$$1 \cdot c = c = 0$$

and therefore a can not be a zero divisor.

2. Prove or disprove: Let $x \in \mathbb{Z}_n$ be a unit. The the multiplicative inverse of x is unique.

Solution: Let R be an ring with identity and suppose $a \in R$ is a unit. Then there exists an inverse $b \in R$: ab = ba = 1. Suppose c is also an inverse of a. Then

$$b = 1 \cdot b = (ca)b = c(ab) = c \cdot 1 = c$$

and c = b and the inverse is unique.

- 3. Let K be a field (for example \mathbb{Q}). Prove that for $f, g \in K[x]$ we have
 - (a) $\deg(fg) = \deg(f) + \deg(g)$

Solution: If deg f or deg g is $-\infty$ then the equality clearly holds. Thus, lets assume that deg f, deg $g \ge 0$. Without loss of generality, we can assume that deg $g = m \le \deg f = n$. Then we can write

$$f = \sum_{k=0}^{n} a_k x^k$$
$$g = \sum_{k=0}^{m} b_k x^k$$

where $n \leq m, a_n \neq 0 \neq b_m$. Then,

$$fg = \sum_{j=0}^{n+m} \left(\sum_{k+l=j} a_k b_l \right) x^j$$

It is clear from the definition that the highest power of x is x^{n+m} . And, the coefficient of x_{n+m} is

$$\sum_{k+l=n+m} a_k b_l = a_n b_m \neq 0$$

Thus, $\deg(fg) = \deg f + \deg g$. (Note: $a_n b_m \neq 0$ since we are in a field, this would not hold true if we were in something like \mathbb{Z}_6 .)

(b) $\deg(f+g) \le \max\{\deg(f), \deg(g)\}\$

Solution: If deg f or deg g is $-\infty$ then the equality clearly holds. Thus, lets assume that deg f, deg $g \ge 0$. Without loss of generality, we can assume that deg $g = m \le \deg f = n$. Then we can write

$$f = \sum_{k=0}^{n} a_k x^k$$
$$g = \sum_{k=0}^{m} b_k x^k$$

where $n \leq m, a_n \neq 0 \neq b_m$. Then, by definition,

$$f + g = \sum_{k=0}^{n} (a_k + b_k) x^k$$

where b_k is defined to be 0 for k > m.

Looking at this definition, it is clear that the highest power of k is n and therefore $\deg(f + g) \leq n$.

As a note, it is clear that it would be possible to actually have $\deg(f+g) \neq n$, in the case where terms cancelled.