Math 331: Homework Due Sept 16

- 1. Let *E* be the triangle in \mathbb{R}^2 with vertices (1,0), $(-1/2, \sqrt{3}/2), (-1/2, -\sqrt{3}/2)$.
 - (a) Verify that E is an equilateral triangle.
 - (b) Find all symmetries of E, written as matrices.
 - (c) Find all symmetries of E, written as permutations. Write these in both cycle notation and function notation.(Ideally, you will have a given symmetry written in all three ways so you can see the different ways of writting the one symmetry.)
- 2. Let C be the unit cube in \mathbb{R}^3 . The vertices of C are $(\pm 1, \pm 1, \pm 1)$.
 - (a) Write down all the symmetries of this cube using matrices.
 - (b) Find all symmetries of C, written as permutations. Write these in both cycle notation and function notation.
 - (c) Compare this to the group of symmetries of the unit octehedron with vertices at $\pm e_1, \pm e_2, \pm e_3$. Discuss any differences or similarities.
- 3. Let T be the tetrahedron in \mathbb{R}^3 with vertices at (1, 1, 1), (-1, -1, 1), (-1, 1, -1), (1, -1, -1).
 - (a) Verify that this is indeed a regular tetrahedron.
 - (b) Write down all symmetries of this tetrahedron using matrices.
 - (c) Find all symmetries of T, written as permutations. Write these in both cycle notation and function notation.
- 4. For each of the following permulations in cycle notation,
 - Write the cycle in "function" notation.
 - If the given cycle is a product of disjoint cycles, write as a product of non-trivial non-disjoint cycles.
 - If the given cycle is not a product of disjoint cycles, write as a product disjoint cycles.
 - (a) (1, 2, 5, 4)(8, 1)
 - (b) (1, 6, 5, 9, 12)(12, 1)(4, 1)
 - (c) (1,2)(2,3)(3,4)(4,5)(5,6)
 - (d) (1, 2, 5)(6, 4, 9)(3, 7)
- 5. Find the inverse of each permultation in Problem 4.

6. (a) Show that any k-cycle (a_1, a_2, \ldots, a_k) can be written as a product of (k-1) 2-cycles. Solution: All you have to do is verify that

 $(a_1, a_2, \dots, a_k) = (a_1 a_2)(a_2 a_3)(a_3 a_4) \dots (a_{k-1} a_k)$

(b) Show that any permutation can be written as a product of 2-cycles.

Solution: Let σ be an arbitrary permutation. We know (from class and from the textbook) that σ can be written as a product of disjoint cycles:

 $\sigma = \sigma_1 \cdots \sigma_k$

where σ_i are cycles. Then, from the previous problem, each σ_i can be written as a product of 2-cycles. Substituting these in gives σ as a product of 2-cycles.

7. For $n \geq 3$ show that S_n is not abelian.

Solution: For $n \ge 3$ the two cycles $(12) \in S_n$ and $(23) \in S_n$ but $(12)(23) \ne (23)(12)$. Thus, S_n is not abelian.

8. Let σ be an element in a group (for example S_n). The order of σ is the smallest positive integer n such that $\sigma^n = e$. State and prove a theorem about the order of a k-cycle in S_n .

Solution: Let $\sigma = (a_1, a_2, \dots, a_k)$ be a k-cycle. Then, viewing σ as a function, we can also write

 $\sigma = (a, \sigma(a), \sigma^2(a), \dots, \sigma^{k-1}a))$

Notice that for any 1 < m < k, we have $\sigma^m(a) \neq a$ but that $\sigma^k(a) = a$. Thus, m = k is the smallest positive integer such that $\sigma^m(a) = a$. Similarly, you should be able to see that $\sigma^k(a_i) = a_i$ for any of the numbers inside of the k-cycle σ .