Name:

1. The Gaussian Integers, denoted $\mathbb{Z}[i]$ is the set

$$
\mathbb{Z}[i]=\{a+i b \mid a, b \in \mathbb{Z}\}
$$

where i is the complex number $i=\sqrt{-1}$. Addition and multiplication in $\mathbb{Z}[i]$ is inherited from \mathbb{C}.
(a) Prove that $\mathbb{Z}[i]$ is a ring.

Solution:

- Addition and multiplication are binary operations for the set $\mathbb{Z}[i]$:

$$
\begin{aligned}
(a+b i)+(c+d i) & =(a+c)+(b+d) i \in \mathbb{Z}[i] \\
(a+b i)(c+d i) & =(a c-b d)+(a d+b c) i \in \mathbb{Z}[i]
\end{aligned}
$$

- $\mathbb{Z}[i]$ is an abelian group under addition. This requires showing that
- Addition is associate (inherited from \mathbb{C})
- Addition is commutative (inherited from \mathbb{C})
- There is an identity for addition. $(0 \in \mathbb{Z}[i])$
- Every element has an additive inverse: $((a+b i)+(-a-b i)=0)$
- Mutiplication is associative (inherited from \mathbb{C})
- Mutiplication is distributive over addition (inherited from \mathbb{C})

2. Let $d=\operatorname{gcd}(1386,350)$.
(a) Find d using the Euclidean algorithm.

Solution:

$$
\begin{aligned}
1386 & =3 \cdot 350+336 \\
350 & =1 \cdot 336+14 \\
336 & =24 \cdot 14
\end{aligned}
$$

$\operatorname{gcd}(1386,350)=14$
(b) Using the Euclidean algorithm, find a and b so that $d=1386 a+350 b$.

Solution: $14=1386 \cdot(-1)+350 \cdot 4$
3. Let $f, g \in \mathbb{Q}[x]$:

$$
\begin{aligned}
& f=x^{4}+2 x^{3}+x^{2}+2 x \\
& g=2 x^{3}+4 x^{2}+3 x+6 \\
& d=\operatorname{gcd}(f, g)
\end{aligned}
$$

Find d using the Euclidean algorithm.

Solution:

$$
\begin{aligned}
& x^{4}+2 x^{3}+x^{2}+2 x=\left(2 x^{3}+4 x^{2}+3 x+6\right)(x / 2)-\left(x^{2}+2 x\right) / 2 \\
& 2 x^{3}+4 x^{2}+3 x+6=\left(x^{2}+2 x\right)(2 x)+(3 x+6) \\
& x^{2}+2 x=x(x+2)+0 \\
& \operatorname{gcd}\left(x^{4}+2 x^{3}+x^{2}+2 x, 2 x^{3}+4 x^{2}+3 x+6\right)=x+2
\end{aligned}
$$

4. Show that for any $n \geq 1, x^{n}-1$ is divisible by $x-1$.

Solution: This is the remainder or factor theorem. We know that $x-1$ is a factor of $f(x)$ if and only if $f(1)=0$. In this case, $f(x)=x^{n}-1$ and $f(1)=1$.
5. A complex number α is called algebraic if it is a root of a polynomial with integer coefficients.
(a) Show that $\sqrt{2}$ is algebraic.

Solution: All we need to do is find a polynomial in $\mathbb{Z}[x]: x^{2}-2$.
(b) Show that $2-i \sqrt{3}$ is algebraic.

Solution: $x^{2}-4 x+7$
(c) π is not algebraic. What would you need to do to be able to prove this?

Solution: You would need to show that there is no polynomial that has π as a root. This is considerably more difficult than exhibiting a polynomial that has a given root as in the previous questions.
6. Let K be a field and $K[x]$ be the ring of polynomials with coefficients in K. As ideal in $K[x]$ is a set I, with the properties:

- If $a, b \in I$ then $a \pm b \in I$.
- If $a \in I$ and $b \in K[x]$ then $a b \in I$.

Let I be a nonzero idea of $K[x]$. Prove that there is some polynomial $f \in I$ such that every element of I is a multiple if f. (This shows that every idea in $K[x]$ is a principal ideal.)
Solution: Let $f \in I$ have minimal, non-negative degree. Such an f exists since I is nonzero. Then, given any $g \in I$, divide f by g :

$$
f=g \cdot q+r
$$

Since $g \in I$ and $q \in K[x]$, we must have $g \cdot q \in I$ (by the definition of an ideal). Also, $r=f-g q$ and therefore $r \in I$. By the minimal assumption of $\operatorname{deg} f$, we must have $r=0$ and we are done. (We proved any g in I is a multiple of f.)

