Name:

1. The Gaussian Integers, denoted $\mathbb{Z}[i]$ is the set

 $\mathbb{Z}[i] = \{a + ib|a, b \in \mathbb{Z}\}\$

where i is the complex number $i = \sqrt{-1}$. Addition and multiplication in $\mathbb{Z}[i]$ is inherited from \mathbb{C} .

(a) Prove that $\mathbb{Z}[i]$ is a ring.

Solution:

• Addition and multiplication are binary operations for the set $\mathbb{Z}[i]$:

$$(a+bi) + (c+di) = (a+c) + (b+d)i \in \mathbb{Z}[i]$$

$$(a+bi)(c+di) = (ac-bd) + (ad+bc)i \in \mathbb{Z}[i]$$

- $\mathbb{Z}[i]$ is an abelian group under addition. This requires showing that
 - Addition is associate (inherited from \mathbb{C})
 - Addition is commutative (inherited from \mathbb{C})
 - There is an identity for addition. $(0 \in \mathbb{Z}[i])$
 - Every element has an additive inverse: ((a + bi) + (-a bi) = 0)
- Mutiplication is associative (inherited from \mathbb{C})
- Mutiplication is distributive over addition (inherited from \mathbb{C})
- 2. Let $d = \gcd(1386, 350)$.
 - (a) Find d using the Euclidean algorithm.

Solution:

```
1386 = 3 \cdot 350 + 336350 = 1 \cdot 336 + 14336 = 24 \cdot 14
```

gcd(1386, 350) = 14

- (b) Using the Euclidean algorithm, find a and b so that d = 1386a + 350b. Solution: $14 = 1386 \cdot (-1) + 350 \cdot 4$
- 3. Let $f, g \in \mathbb{Q}[x]$:

$$f = x^{4} + 2x^{3} + x^{2} + 2x$$

$$g = 2x^{3} + 4x^{2} + 3x + 6$$

$$d = \gcd(f, g)$$

Find d using the Euclidean algorithm.

Solution:

$$x^{4} + 2x^{3} + x^{2} + 2x = (2x^{3} + 4x^{2} + 3x + 6)(x/2) - (x^{2} + 2x)/2$$

$$2x^{3} + 4x^{2} + 3x + 6 = (x^{2} + 2x)(2x) + (3x + 6)$$

$$x^{2} + 2x = x(x + 2) + 0$$

$$gcd(x^{4} + 2x^{3} + x^{2} + 2x, 2x^{3} + 4x^{2} + 3x + 6) = x + 2$$

4. Show that for any $n \ge 1$, $x^n - 1$ is divisible by x - 1.

Solution: This is the remainder or factor theorem. We know that x - 1 is a factor of f(x) if and only if f(1) = 0. In this case, $f(x) = x^n - 1$ and f(1) = 1.

- 5. A complex number α is called *algebraic* if it is a root of a polynomial with integer coefficients.
 - (a) Show that $\sqrt{2}$ is algebraic. Solution: All we need to do is find a polynomial in $\mathbb{Z}[x]$: $x^2 - 2$.
 - (b) Show that $2 i\sqrt{3}$ is algebraic. Solution: $x^2 - 4x + 7$
 - (c) π is not algebraic. What would you need to do to be able to prove this? Solution: You would need to show that there is no polynomial that has π as a root. This is considerably more difficult than exhibiting a polynomial that has a given root as in the previous questions.
- 6. Let K be a field and K[x] be the ring of polynomials with coefficients in K. As *ideal* in K[x] is a set I, with the properties:
 - If $a, b \in I$ then $a \pm b \in I$.
 - If $a \in I$ and $b \in K[x]$ then $ab \in I$.

Let I be a nonzero idea of K[x]. Prove that there is some polynomial $f \in I$ such that every element of I is a multiple if f. (This shows that every idea in K[x] is a principal ideal.)

Solution: Let $f \in I$ have minimal, non-negative degree. Such an f exists since I is nonzero. Then, given any $g \in I$, divide f by g:

$$f = g \cdot q + r$$

Since $g \in I$ and $q \in K[x]$, we must have $g \cdot q \in I$ (by the definition of an ideal). Also, r = f - gq and therefore $r \in I$. By the minimal assumption of deg f, we must have r = 0 and we are done. (We proved any g in I is a multiple of f.)